ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprm Unicode version

Theorem oddprm 12200
Description: A prime not equal to  2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oddprm  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )

Proof of Theorem oddprm
StepHypRef Expression
1 eldifi 3249 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  e.  Prime )
2 prmz 12052 . . . . 5  |-  ( N  e.  Prime  ->  N  e.  ZZ )
31, 2syl 14 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  e.  ZZ )
4 eldifsni 3710 . . . . . . 7  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  =/=  2 )
54necomd 2426 . . . . . 6  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
2  =/=  N )
65neneqd 2361 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  ->  -.  2  =  N
)
7 2z 9227 . . . . . . 7  |-  2  e.  ZZ
8 uzid 9488 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
97, 8ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
10 dvdsprm 12078 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  N  e.  Prime )  ->  (
2  ||  N  <->  2  =  N ) )
119, 1, 10sylancr 412 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  N  <->  2  =  N ) )
126, 11mtbird 668 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  ->  -.  2  ||  N )
13 1z 9225 . . . . 5  |-  1  e.  ZZ
14 n2dvds1 11858 . . . . 5  |-  -.  2  ||  1
15 omoe 11842 . . . . 5  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
1613, 14, 15mpanr12 437 . . . 4  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  2  ||  ( N  -  1 ) )
173, 12, 16syl2anc 409 . . 3  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
2  ||  ( N  -  1 ) )
18 prmnn 12051 . . . . 5  |-  ( N  e.  Prime  ->  N  e.  NN )
19 nnm1nn0 9163 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
201, 18, 193syl 17 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( N  -  1 )  e.  NN0 )
21 nn0z 9219 . . . 4  |-  ( ( N  -  1 )  e.  NN0  ->  ( N  -  1 )  e.  ZZ )
22 evend2 11835 . . . 4  |-  ( ( N  -  1 )  e.  ZZ  ->  (
2  ||  ( N  -  1 )  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
2320, 21, 223syl 17 . . 3  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
2417, 23mpbid 146 . 2  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ )
25 prmuz2 12072 . . 3  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
26 uz2m1nn 9551 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
27 nngt0 8890 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  0  <  ( N  -  1 ) )
28 nnre 8872 . . . . 5  |-  ( ( N  -  1 )  e.  NN  ->  ( N  -  1 )  e.  RR )
29 2rp 9602 . . . . . 6  |-  2  e.  RR+
3029a1i 9 . . . . 5  |-  ( ( N  -  1 )  e.  NN  ->  2  e.  RR+ )
3128, 30gt0divd 9678 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  (
0  <  ( N  -  1 )  <->  0  <  ( ( N  -  1 )  /  2 ) ) )
3227, 31mpbid 146 . . 3  |-  ( ( N  -  1 )  e.  NN  ->  0  <  ( ( N  - 
1 )  /  2
) )
331, 25, 26, 324syl 18 . 2  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
0  <  ( ( N  -  1 )  /  2 ) )
34 elnnz 9209 . 2  |-  ( ( ( N  -  1 )  /  2 )  e.  NN  <->  ( (
( N  -  1 )  /  2 )  e.  ZZ  /\  0  <  ( ( N  - 
1 )  /  2
) ) )
3524, 33, 34sylanbrc 415 1  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    \ cdif 3118   {csn 3581   class class class wbr 3987   ` cfv 5196  (class class class)co 5850   0cc0 7761   1c1 7762    < clt 7941    - cmin 8077    / cdiv 8576   NNcn 8865   2c2 8916   NN0cn0 9122   ZZcz 9199   ZZ>=cuz 9474   RR+crp 9597    || cdvds 11736   Primecprime 12048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-1o 6392  df-2o 6393  df-er 6509  df-en 6715  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-dvds 11737  df-prm 12049
This theorem is referenced by:  nnoddn2prm  12201  lgslem1  13654  lgslem4  13657  lgsval2lem  13664  lgsvalmod  13673  lgsmod  13680  lgsdirprm  13688  lgsne0  13692
  Copyright terms: Public domain W3C validator