ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprm Unicode version

Theorem oddprm 12290
Description: A prime not equal to  2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oddprm  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )

Proof of Theorem oddprm
StepHypRef Expression
1 eldifi 3272 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  e.  Prime )
2 prmz 12142 . . . . 5  |-  ( N  e.  Prime  ->  N  e.  ZZ )
31, 2syl 14 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  e.  ZZ )
4 eldifsni 3736 . . . . . . 7  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  =/=  2 )
54necomd 2446 . . . . . 6  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
2  =/=  N )
65neneqd 2381 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  ->  -.  2  =  N
)
7 2z 9310 . . . . . . 7  |-  2  e.  ZZ
8 uzid 9571 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
97, 8ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
10 dvdsprm 12168 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  N  e.  Prime )  ->  (
2  ||  N  <->  2  =  N ) )
119, 1, 10sylancr 414 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  N  <->  2  =  N ) )
126, 11mtbird 674 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  ->  -.  2  ||  N )
13 1z 9308 . . . . 5  |-  1  e.  ZZ
14 n2dvds1 11948 . . . . 5  |-  -.  2  ||  1
15 omoe 11932 . . . . 5  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
1613, 14, 15mpanr12 439 . . . 4  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  2  ||  ( N  -  1 ) )
173, 12, 16syl2anc 411 . . 3  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
2  ||  ( N  -  1 ) )
18 prmnn 12141 . . . . 5  |-  ( N  e.  Prime  ->  N  e.  NN )
19 nnm1nn0 9246 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
201, 18, 193syl 17 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( N  -  1 )  e.  NN0 )
21 nn0z 9302 . . . 4  |-  ( ( N  -  1 )  e.  NN0  ->  ( N  -  1 )  e.  ZZ )
22 evend2 11925 . . . 4  |-  ( ( N  -  1 )  e.  ZZ  ->  (
2  ||  ( N  -  1 )  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
2320, 21, 223syl 17 . . 3  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
2417, 23mpbid 147 . 2  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ )
25 prmuz2 12162 . . 3  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
26 uz2m1nn 9634 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
27 nngt0 8973 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  0  <  ( N  -  1 ) )
28 nnre 8955 . . . . 5  |-  ( ( N  -  1 )  e.  NN  ->  ( N  -  1 )  e.  RR )
29 2rp 9687 . . . . . 6  |-  2  e.  RR+
3029a1i 9 . . . . 5  |-  ( ( N  -  1 )  e.  NN  ->  2  e.  RR+ )
3128, 30gt0divd 9763 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  (
0  <  ( N  -  1 )  <->  0  <  ( ( N  -  1 )  /  2 ) ) )
3227, 31mpbid 147 . . 3  |-  ( ( N  -  1 )  e.  NN  ->  0  <  ( ( N  - 
1 )  /  2
) )
331, 25, 26, 324syl 18 . 2  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
0  <  ( ( N  -  1 )  /  2 ) )
34 elnnz 9292 . 2  |-  ( ( ( N  -  1 )  /  2 )  e.  NN  <->  ( (
( N  -  1 )  /  2 )  e.  ZZ  /\  0  <  ( ( N  - 
1 )  /  2
) ) )
3524, 33, 34sylanbrc 417 1  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160    \ cdif 3141   {csn 3607   class class class wbr 4018   ` cfv 5235  (class class class)co 5895   0cc0 7840   1c1 7841    < clt 8021    - cmin 8157    / cdiv 8658   NNcn 8948   2c2 8999   NN0cn0 9205   ZZcz 9282   ZZ>=cuz 9557   RR+crp 9682    || cdvds 11825   Primecprime 12138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-1o 6440  df-2o 6441  df-er 6558  df-en 6766  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-rp 9683  df-seqfrec 10476  df-exp 10550  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-dvds 11826  df-prm 12139
This theorem is referenced by:  nnoddn2prm  12291  4sqlem19  12440  lgslem1  14854  lgslem4  14857  lgsval2lem  14864  lgsvalmod  14873  lgsmod  14880  lgsdirprm  14888  lgsne0  14892  lgseisenlem1  14903  lgseisenlem2  14904  m1lgs  14905
  Copyright terms: Public domain W3C validator