ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprm Unicode version

Theorem oddprm 12615
Description: A prime not equal to  2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oddprm  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )

Proof of Theorem oddprm
StepHypRef Expression
1 eldifi 3295 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  e.  Prime )
2 prmz 12466 . . . . 5  |-  ( N  e.  Prime  ->  N  e.  ZZ )
31, 2syl 14 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  e.  ZZ )
4 eldifsni 3762 . . . . . . 7  |-  ( N  e.  ( Prime  \  {
2 } )  ->  N  =/=  2 )
54necomd 2462 . . . . . 6  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
2  =/=  N )
65neneqd 2397 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  ->  -.  2  =  N
)
7 2z 9402 . . . . . . 7  |-  2  e.  ZZ
8 uzid 9664 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
97, 8ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
10 dvdsprm 12492 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  N  e.  Prime )  ->  (
2  ||  N  <->  2  =  N ) )
119, 1, 10sylancr 414 . . . . 5  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  N  <->  2  =  N ) )
126, 11mtbird 675 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  ->  -.  2  ||  N )
13 1z 9400 . . . . 5  |-  1  e.  ZZ
14 n2dvds1 12256 . . . . 5  |-  -.  2  ||  1
15 omoe 12240 . . . . 5  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
1613, 14, 15mpanr12 439 . . . 4  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  2  ||  ( N  -  1 ) )
173, 12, 16syl2anc 411 . . 3  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
2  ||  ( N  -  1 ) )
18 prmnn 12465 . . . . 5  |-  ( N  e.  Prime  ->  N  e.  NN )
19 nnm1nn0 9338 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
201, 18, 193syl 17 . . . 4  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( N  -  1 )  e.  NN0 )
21 nn0z 9394 . . . 4  |-  ( ( N  -  1 )  e.  NN0  ->  ( N  -  1 )  e.  ZZ )
22 evend2 12233 . . . 4  |-  ( ( N  -  1 )  e.  ZZ  ->  (
2  ||  ( N  -  1 )  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
2320, 21, 223syl 17 . . 3  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
2417, 23mpbid 147 . 2  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ )
25 prmuz2 12486 . . 3  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
26 uz2m1nn 9728 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
27 nngt0 9063 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  0  <  ( N  -  1 ) )
28 nnre 9045 . . . . 5  |-  ( ( N  -  1 )  e.  NN  ->  ( N  -  1 )  e.  RR )
29 2rp 9782 . . . . . 6  |-  2  e.  RR+
3029a1i 9 . . . . 5  |-  ( ( N  -  1 )  e.  NN  ->  2  e.  RR+ )
3128, 30gt0divd 9858 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  (
0  <  ( N  -  1 )  <->  0  <  ( ( N  -  1 )  /  2 ) ) )
3227, 31mpbid 147 . . 3  |-  ( ( N  -  1 )  e.  NN  ->  0  <  ( ( N  - 
1 )  /  2
) )
331, 25, 26, 324syl 18 . 2  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
0  <  ( ( N  -  1 )  /  2 ) )
34 elnnz 9384 . 2  |-  ( ( ( N  -  1 )  /  2 )  e.  NN  <->  ( (
( N  -  1 )  /  2 )  e.  ZZ  /\  0  <  ( ( N  - 
1 )  /  2
) ) )
3524, 33, 34sylanbrc 417 1  |-  ( N  e.  ( Prime  \  {
2 } )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    \ cdif 3163   {csn 3633   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   0cc0 7927   1c1 7928    < clt 8109    - cmin 8245    / cdiv 8747   NNcn 9038   2c2 9089   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   RR+crp 9777    || cdvds 12131   Primecprime 12462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-2o 6505  df-er 6622  df-en 6830  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-prm 12463
This theorem is referenced by:  nnoddn2prm  12616  4sqlem19  12765  lgslem1  15510  lgslem4  15513  lgsval2lem  15520  lgsvalmod  15529  lgsmod  15536  lgsdirprm  15544  lgsne0  15548  gausslemma2dlem4  15574  lgseisenlem1  15580  lgseisenlem2  15581  lgseisenlem4  15583  lgseisen  15584  m1lgs  15595  2lgslem1  15601  2lgslem2  15602
  Copyright terms: Public domain W3C validator