| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isoselem | Unicode version | ||
| Description: Lemma for isose 5890. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| isofrlem.1 |
|
| isofrlem.2 |
|
| Ref | Expression |
|---|---|
| isoselem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfse2 5055 |
. . . . . . . . 9
| |
| 2 | 1 | biimpi 120 |
. . . . . . . 8
|
| 3 | 2 | r19.21bi 2594 |
. . . . . . 7
|
| 4 | 3 | expcom 116 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | imaeq2 5018 |
. . . . . . . . . . 11
| |
| 7 | 6 | eleq1d 2274 |
. . . . . . . . . 10
|
| 8 | 7 | imbi2d 230 |
. . . . . . . . 9
|
| 9 | isofrlem.2 |
. . . . . . . . 9
| |
| 10 | 8, 9 | vtoclg 2833 |
. . . . . . . 8
|
| 11 | 10 | com12 30 |
. . . . . . 7
|
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | isofrlem.1 |
. . . . . . . 8
| |
| 14 | isoini 5887 |
. . . . . . . 8
| |
| 15 | 13, 14 | sylan 283 |
. . . . . . 7
|
| 16 | 15 | eleq1d 2274 |
. . . . . 6
|
| 17 | 12, 16 | sylibd 149 |
. . . . 5
|
| 18 | 5, 17 | syld 45 |
. . . 4
|
| 19 | 18 | ralrimdva 2586 |
. . 3
|
| 20 | isof1o 5876 |
. . . . 5
| |
| 21 | f1ofn 5523 |
. . . . 5
| |
| 22 | sneq 3644 |
. . . . . . . . 9
| |
| 23 | 22 | imaeq2d 5022 |
. . . . . . . 8
|
| 24 | 23 | ineq2d 3374 |
. . . . . . 7
|
| 25 | 24 | eleq1d 2274 |
. . . . . 6
|
| 26 | 25 | ralrn 5718 |
. . . . 5
|
| 27 | 13, 20, 21, 26 | 4syl 18 |
. . . 4
|
| 28 | f1ofo 5529 |
. . . . . 6
| |
| 29 | forn 5501 |
. . . . . 6
| |
| 30 | 13, 20, 28, 29 | 4syl 18 |
. . . . 5
|
| 31 | 30 | raleqdv 2708 |
. . . 4
|
| 32 | 27, 31 | bitr3d 190 |
. . 3
|
| 33 | 19, 32 | sylibd 149 |
. 2
|
| 34 | dfse2 5055 |
. 2
| |
| 35 | 33, 34 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-se 4380 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 |
| This theorem is referenced by: isose 5890 |
| Copyright terms: Public domain | W3C validator |