ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoselem Unicode version

Theorem isoselem 5863
Description: Lemma for isose 5864. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
isofrlem.2  |-  ( ph  ->  ( H " x
)  e.  _V )
Assertion
Ref Expression
isoselem  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Distinct variable groups:    x, A    x, B    x, H    ph, x    x, R    x, S

Proof of Theorem isoselem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 5038 . . . . . . . . 9  |-  ( R Se  A  <->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e. 
_V )
21biimpi 120 . . . . . . . 8  |-  ( R Se  A  ->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e.  _V )
32r19.21bi 2582 . . . . . . 7  |-  ( ( R Se  A  /\  z  e.  A )  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
43expcom 116 . . . . . 6  |-  ( z  e.  A  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
54adantl 277 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
6 imaeq2 5001 . . . . . . . . . . 11  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( H " x
)  =  ( H
" ( A  i^i  ( `' R " { z } ) ) ) )
76eleq1d 2262 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( H "
x )  e.  _V  <->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
87imbi2d 230 . . . . . . . . 9  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( ph  ->  ( H " x )  e.  _V )  <->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) ) )
9 isofrlem.2 . . . . . . . . 9  |-  ( ph  ->  ( H " x
)  e.  _V )
108, 9vtoclg 2820 . . . . . . . 8  |-  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1110com12 30 . . . . . . 7  |-  ( ph  ->  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
13 isofrlem.1 . . . . . . . 8  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
14 isoini 5861 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1513, 14sylan 283 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1615eleq1d 2262 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V  <->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
1712, 16sylibd 149 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
185, 17syld 45 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
1918ralrimdva 2574 . . 3  |-  ( ph  ->  ( R Se  A  ->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
20 isof1o 5850 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
21 f1ofn 5501 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
22 sneq 3629 . . . . . . . . 9  |-  ( y  =  ( H `  z )  ->  { y }  =  { ( H `  z ) } )
2322imaeq2d 5005 . . . . . . . 8  |-  ( y  =  ( H `  z )  ->  ( `' S " { y } )  =  ( `' S " { ( H `  z ) } ) )
2423ineq2d 3360 . . . . . . 7  |-  ( y  =  ( H `  z )  ->  ( B  i^i  ( `' S " { y } ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
2524eleq1d 2262 . . . . . 6  |-  ( y  =  ( H `  z )  ->  (
( B  i^i  ( `' S " { y } ) )  e. 
_V 
<->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2625ralrn 5696 . . . . 5  |-  ( H  Fn  A  ->  ( A. y  e.  ran  H ( B  i^i  ( `' S " { y } ) )  e. 
_V 
<-> 
A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2713, 20, 21, 264syl 18 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
28 f1ofo 5507 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -onto-> B )
29 forn 5479 . . . . . 6  |-  ( H : A -onto-> B  ->  ran  H  =  B )
3013, 20, 28, 294syl 18 . . . . 5  |-  ( ph  ->  ran  H  =  B )
3130raleqdv 2696 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e.  _V )
)
3227, 31bitr3d 190 . . 3  |-  ( ph  ->  ( A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V 
<-> 
A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
3319, 32sylibd 149 . 2  |-  ( ph  ->  ( R Se  A  ->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
34 dfse2 5038 . 2  |-  ( S Se  B  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V )
3533, 34imbitrrdi 162 1  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    i^i cin 3152   {csn 3618   Se wse 4360   `'ccnv 4658   ran crn 4660   "cima 4662    Fn wfn 5249   -onto->wfo 5252   -1-1-onto->wf1o 5253   ` cfv 5254    Isom wiso 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-se 4364  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263
This theorem is referenced by:  isose  5864
  Copyright terms: Public domain W3C validator