ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoselem Unicode version

Theorem isoselem 5867
Description: Lemma for isose 5868. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
isofrlem.2  |-  ( ph  ->  ( H " x
)  e.  _V )
Assertion
Ref Expression
isoselem  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Distinct variable groups:    x, A    x, B    x, H    ph, x    x, R    x, S

Proof of Theorem isoselem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 5042 . . . . . . . . 9  |-  ( R Se  A  <->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e. 
_V )
21biimpi 120 . . . . . . . 8  |-  ( R Se  A  ->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e.  _V )
32r19.21bi 2585 . . . . . . 7  |-  ( ( R Se  A  /\  z  e.  A )  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
43expcom 116 . . . . . 6  |-  ( z  e.  A  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
54adantl 277 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
6 imaeq2 5005 . . . . . . . . . . 11  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( H " x
)  =  ( H
" ( A  i^i  ( `' R " { z } ) ) ) )
76eleq1d 2265 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( H "
x )  e.  _V  <->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
87imbi2d 230 . . . . . . . . 9  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( ph  ->  ( H " x )  e.  _V )  <->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) ) )
9 isofrlem.2 . . . . . . . . 9  |-  ( ph  ->  ( H " x
)  e.  _V )
108, 9vtoclg 2824 . . . . . . . 8  |-  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1110com12 30 . . . . . . 7  |-  ( ph  ->  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
13 isofrlem.1 . . . . . . . 8  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
14 isoini 5865 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1513, 14sylan 283 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1615eleq1d 2265 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V  <->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
1712, 16sylibd 149 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
185, 17syld 45 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
1918ralrimdva 2577 . . 3  |-  ( ph  ->  ( R Se  A  ->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
20 isof1o 5854 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
21 f1ofn 5505 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
22 sneq 3633 . . . . . . . . 9  |-  ( y  =  ( H `  z )  ->  { y }  =  { ( H `  z ) } )
2322imaeq2d 5009 . . . . . . . 8  |-  ( y  =  ( H `  z )  ->  ( `' S " { y } )  =  ( `' S " { ( H `  z ) } ) )
2423ineq2d 3364 . . . . . . 7  |-  ( y  =  ( H `  z )  ->  ( B  i^i  ( `' S " { y } ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
2524eleq1d 2265 . . . . . 6  |-  ( y  =  ( H `  z )  ->  (
( B  i^i  ( `' S " { y } ) )  e. 
_V 
<->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2625ralrn 5700 . . . . 5  |-  ( H  Fn  A  ->  ( A. y  e.  ran  H ( B  i^i  ( `' S " { y } ) )  e. 
_V 
<-> 
A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2713, 20, 21, 264syl 18 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
28 f1ofo 5511 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -onto-> B )
29 forn 5483 . . . . . 6  |-  ( H : A -onto-> B  ->  ran  H  =  B )
3013, 20, 28, 294syl 18 . . . . 5  |-  ( ph  ->  ran  H  =  B )
3130raleqdv 2699 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e.  _V )
)
3227, 31bitr3d 190 . . 3  |-  ( ph  ->  ( A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V 
<-> 
A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
3319, 32sylibd 149 . 2  |-  ( ph  ->  ( R Se  A  ->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
34 dfse2 5042 . 2  |-  ( S Se  B  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V )
3533, 34imbitrrdi 162 1  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    i^i cin 3156   {csn 3622   Se wse 4364   `'ccnv 4662   ran crn 4664   "cima 4666    Fn wfn 5253   -onto->wfo 5256   -1-1-onto->wf1o 5257   ` cfv 5258    Isom wiso 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-se 4368  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267
This theorem is referenced by:  isose  5868
  Copyright terms: Public domain W3C validator