ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isose Unicode version

Theorem isose 5945
Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
isose  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  <->  S Se  B ) )

Proof of Theorem isose
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Isom  R ,  S  ( A ,  B ) )
2 isof1o 5931 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
3 f1ofun 5574 . . . 4  |-  ( H : A -1-1-onto-> B  ->  Fun  H )
4 vex 2802 . . . . 5  |-  x  e. 
_V
54funimaex 5406 . . . 4  |-  ( Fun 
H  ->  ( H " x )  e.  _V )
62, 3, 53syl 17 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( H "
x )  e.  _V )
71, 6isoselem 5944 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  ->  S Se  B ) )
8 isocnv 5935 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
9 isof1o 5931 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' H : B -1-1-onto-> A )
10 f1ofun 5574 . . . 4  |-  ( `' H : B -1-1-onto-> A  ->  Fun  `' H )
114funimaex 5406 . . . 4  |-  ( Fun  `' H  ->  ( `' H " x )  e.  _V )
128, 9, 10, 114syl 18 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( `' H " x )  e.  _V )
138, 12isoselem 5944 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S Se  B  ->  R Se  A ) )
147, 13impbid 129 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  <->  S Se  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   _Vcvv 2799   Se wse 4420   `'ccnv 4718   "cima 4722   Fun wfun 5312   -1-1-onto->wf1o 5317    Isom wiso 5319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-se 4424  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator