ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isose Unicode version

Theorem isose 5725
Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
isose  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  <->  S Se  B ) )

Proof of Theorem isose
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Isom  R ,  S  ( A ,  B ) )
2 isof1o 5711 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
3 f1ofun 5372 . . . 4  |-  ( H : A -1-1-onto-> B  ->  Fun  H )
4 vex 2689 . . . . 5  |-  x  e. 
_V
54funimaex 5211 . . . 4  |-  ( Fun 
H  ->  ( H " x )  e.  _V )
62, 3, 53syl 17 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( H "
x )  e.  _V )
71, 6isoselem 5724 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  ->  S Se  B ) )
8 isocnv 5715 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
9 isof1o 5711 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' H : B -1-1-onto-> A )
10 f1ofun 5372 . . . 4  |-  ( `' H : B -1-1-onto-> A  ->  Fun  `' H )
114funimaex 5211 . . . 4  |-  ( Fun  `' H  ->  ( `' H " x )  e.  _V )
128, 9, 10, 114syl 18 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( `' H " x )  e.  _V )
138, 12isoselem 5724 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S Se  B  ->  R Se  A ) )
147, 13impbid 128 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  <->  S Se  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 1480   _Vcvv 2686   Se wse 4254   `'ccnv 4541   "cima 4545   Fun wfun 5120   -1-1-onto->wf1o 5125    Isom wiso 5127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4046  ax-sep 4049  ax-pow 4101  ax-pr 4134
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-se 4258  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-f1 5131  df-fo 5132  df-f1o 5133  df-fv 5134  df-isom 5135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator