ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isose Unicode version

Theorem isose 5600
Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
isose  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  <->  S Se  B ) )

Proof of Theorem isose
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Isom  R ,  S  ( A ,  B ) )
2 isof1o 5586 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
3 f1ofun 5255 . . . 4  |-  ( H : A -1-1-onto-> B  ->  Fun  H )
4 vex 2622 . . . . 5  |-  x  e. 
_V
54funimaex 5099 . . . 4  |-  ( Fun 
H  ->  ( H " x )  e.  _V )
62, 3, 53syl 17 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( H "
x )  e.  _V )
71, 6isoselem 5599 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  ->  S Se  B ) )
8 isocnv 5590 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
9 isof1o 5586 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' H : B -1-1-onto-> A )
10 f1ofun 5255 . . . 4  |-  ( `' H : B -1-1-onto-> A  ->  Fun  `' H )
114funimaex 5099 . . . 4  |-  ( Fun  `' H  ->  ( `' H " x )  e.  _V )
128, 9, 10, 114syl 18 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( `' H " x )  e.  _V )
138, 12isoselem 5599 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S Se  B  ->  R Se  A ) )
147, 13impbid 127 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R Se  A  <->  S Se  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    e. wcel 1438   _Vcvv 2619   Se wse 4156   `'ccnv 4437   "cima 4441   Fun wfun 5009   -1-1-onto->wf1o 5014    Isom wiso 5016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-se 4160  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator