ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosplitsnm1 Unicode version

Theorem fzosplitsnm1 10017
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
fzosplitsnm1  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( A..^ B )  =  ( ( A..^ ( B  -  1 ) )  u.  {
( B  -  1 ) } ) )

Proof of Theorem fzosplitsnm1
StepHypRef Expression
1 eluzelz 9359 . . . . . 6  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  B  e.  ZZ )
21zcnd 9198 . . . . 5  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  B  e.  CC )
32adantl 275 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  ->  B  e.  CC )
4 ax-1cn 7737 . . . 4  |-  1  e.  CC
5 npcan 7995 . . . . 5  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
65eqcomd 2146 . . . 4  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  B  =  ( ( B  -  1 )  +  1 ) )
73, 4, 6sylancl 410 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  ->  B  =  ( ( B  -  1 )  +  1 ) )
87oveq2d 5798 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( A..^ B )  =  ( A..^ (
( B  -  1 )  +  1 ) ) )
9 eluzp1m1 9373 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( B  -  1 )  e.  ( ZZ>= `  A ) )
101adantl 275 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  ->  B  e.  ZZ )
11 peano2zm 9116 . . . . 5  |-  ( B  e.  ZZ  ->  ( B  -  1 )  e.  ZZ )
12 uzid 9364 . . . . 5  |-  ( ( B  -  1 )  e.  ZZ  ->  ( B  -  1 )  e.  ( ZZ>= `  ( B  -  1 ) ) )
13 peano2uz 9405 . . . . 5  |-  ( ( B  -  1 )  e.  ( ZZ>= `  ( B  -  1 ) )  ->  ( ( B  -  1 )  +  1 )  e.  ( ZZ>= `  ( B  -  1 ) ) )
1410, 11, 12, 134syl 18 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( ( B  - 
1 )  +  1 )  e.  ( ZZ>= `  ( B  -  1
) ) )
15 elfzuzb 9831 . . . 4  |-  ( ( B  -  1 )  e.  ( A ... ( ( B  - 
1 )  +  1 ) )  <->  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  /\  ( ( B  -  1 )  +  1 )  e.  ( ZZ>= `  ( B  -  1 ) ) ) )
169, 14, 15sylanbrc 414 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( B  -  1 )  e.  ( A ... ( ( B  -  1 )  +  1 ) ) )
17 fzosplit 9985 . . 3  |-  ( ( B  -  1 )  e.  ( A ... ( ( B  - 
1 )  +  1 ) )  ->  ( A..^ ( ( B  - 
1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  ( ( B  -  1 )..^ ( ( B  -  1 )  +  1 ) ) ) )
1816, 17syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( A..^ ( ( B  -  1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  (
( B  -  1 )..^ ( ( B  -  1 )  +  1 ) ) ) )
191, 11syl 14 . . . . 5  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  ( B  -  1 )  e.  ZZ )
2019adantl 275 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( B  -  1 )  e.  ZZ )
21 fzosn 10013 . . . 4  |-  ( ( B  -  1 )  e.  ZZ  ->  (
( B  -  1 )..^ ( ( B  -  1 )  +  1 ) )  =  { ( B  - 
1 ) } )
2220, 21syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( ( B  - 
1 )..^ ( ( B  -  1 )  +  1 ) )  =  { ( B  -  1 ) } )
2322uneq2d 3235 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( ( A..^ ( B  -  1 ) )  u.  ( ( B  -  1 )..^ ( ( B  - 
1 )  +  1 ) ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
248, 18, 233eqtrd 2177 1  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( A..^ B )  =  ( ( A..^ ( B  -  1 ) )  u.  {
( B  -  1 ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    u. cun 3074   {csn 3532   ` cfv 5131  (class class class)co 5782   CCcc 7642   1c1 7645    + caddc 7647    - cmin 7957   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by:  elfzonlteqm1  10018
  Copyright terms: Public domain W3C validator