ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzostep1 Unicode version

Theorem fzostep1 10443
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzostep1  |-  ( A  e.  ( B..^ C
)  ->  ( ( A  +  1 )  e.  ( B..^ C
)  \/  ( A  +  1 )  =  C ) )

Proof of Theorem fzostep1
StepHypRef Expression
1 elfzoel1 10341 . . . 4  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
2 uzid 9736 . . . 4  |-  ( B  e.  ZZ  ->  B  e.  ( ZZ>= `  B )
)
3 peano2uz 9778 . . . 4  |-  ( B  e.  ( ZZ>= `  B
)  ->  ( B  +  1 )  e.  ( ZZ>= `  B )
)
4 fzoss1 10369 . . . 4  |-  ( ( B  +  1 )  e.  ( ZZ>= `  B
)  ->  ( ( B  +  1 )..^ ( C  +  1 ) )  C_  ( B..^ ( C  +  1 ) ) )
51, 2, 3, 44syl 18 . . 3  |-  ( A  e.  ( B..^ C
)  ->  ( ( B  +  1 )..^ ( C  +  1 ) )  C_  ( B..^ ( C  +  1 ) ) )
6 1z 9472 . . . 4  |-  1  e.  ZZ
7 fzoaddel 10393 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  1  e.  ZZ )  ->  ( A  +  1 )  e.  ( ( B  +  1 )..^ ( C  +  1 ) ) )
86, 7mpan2 425 . . 3  |-  ( A  e.  ( B..^ C
)  ->  ( A  +  1 )  e.  ( ( B  + 
1 )..^ ( C  +  1 ) ) )
95, 8sseldd 3225 . 2  |-  ( A  e.  ( B..^ C
)  ->  ( A  +  1 )  e.  ( B..^ ( C  +  1 ) ) )
10 elfzoel2 10342 . . . 4  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
11 elfzolt3 10354 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  B  <  C )
12 zre 9450 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  RR )
13 zre 9450 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  RR )
14 ltle 8234 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <  C  ->  B  <_  C )
)
1512, 13, 14syl2an 289 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  <  C  ->  B  <_  C )
)
161, 10, 15syl2anc 411 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  ( B  <  C  ->  B  <_  C ) )
1711, 16mpd 13 . . . 4  |-  ( A  e.  ( B..^ C
)  ->  B  <_  C )
18 eluz2 9728 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  <->  ( B  e.  ZZ  /\  C  e.  ZZ  /\  B  <_  C ) )
191, 10, 17, 18syl3anbrc 1205 . . 3  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ( ZZ>= `  B )
)
20 fzosplitsni 10441 . . 3  |-  ( C  e.  ( ZZ>= `  B
)  ->  ( ( A  +  1 )  e.  ( B..^ ( C  +  1 ) )  <->  ( ( A  +  1 )  e.  ( B..^ C )  \/  ( A  + 
1 )  =  C ) ) )
2119, 20syl 14 . 2  |-  ( A  e.  ( B..^ C
)  ->  ( ( A  +  1 )  e.  ( B..^ ( C  +  1 ) )  <->  ( ( A  +  1 )  e.  ( B..^ C )  \/  ( A  + 
1 )  =  C ) ) )
229, 21mpbid 147 1  |-  ( A  e.  ( B..^ C
)  ->  ( ( A  +  1 )  e.  ( B..^ C
)  \/  ( A  +  1 )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   ZZcz 9446   ZZ>=cuz 9722  ..^cfzo 10338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator