ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serf0 Unicode version

Theorem serf0 11344
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
climcauc.1  |-  Z  =  ( ZZ>= `  M )
serf0.2  |-  ( ph  ->  M  e.  ZZ )
serf0.3  |-  ( ph  ->  F  e.  V )
serf0.4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
serf0.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
serf0  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    k, F    k, M    k, Z    ph, k    k, V

Proof of Theorem serf0
Dummy variables  j  m  n  x  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serf0.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2 serf0.4 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
3 climcauc.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
43climcaucn 11343 . . . . 5  |-  ( ( M  e.  ZZ  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  j
) ) )  < 
x ) )
51, 2, 4syl2anc 411 . . . 4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  j
) ) )  < 
x ) )
63cau3 11108 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x ) )
75, 6sylib 122 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x ) )
83peano2uzs 9573 . . . . . . 7  |-  ( j  e.  Z  ->  (
j  +  1 )  e.  Z )
98adantl 277 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  1 )  e.  Z )
10 eluzelz 9526 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  j
)  ->  m  e.  ZZ )
11 uzid 9531 . . . . . . . . . 10  |-  ( m  e.  ZZ  ->  m  e.  ( ZZ>= `  m )
)
12 peano2uz 9572 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  m
)  ->  ( m  +  1 )  e.  ( ZZ>= `  m )
)
13 fveq2 5511 . . . . . . . . . . . . . 14  |-  ( k  =  ( m  + 
1 )  ->  (  seq M (  +  ,  F ) `  k
)  =  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) )
1413oveq2d 5885 . . . . . . . . . . . . 13  |-  ( k  =  ( m  + 
1 )  ->  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) )  =  ( (  seq M (  +  ,  F ) `
 m )  -  (  seq M (  +  ,  F ) `  ( m  +  1
) ) ) )
1514fveq2d 5515 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  k
) ) )  =  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) ) )
1615breq1d 4010 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  (
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x  <->  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1716rspcv 2837 . . . . . . . . . 10  |-  ( ( m  +  1 )  e.  ( ZZ>= `  m
)  ->  ( A. k  e.  ( ZZ>= `  m ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 k ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1810, 11, 12, 174syl 18 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  m ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 k ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1918adantld 278 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
(  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
2019ralimia 2538 . . . . . . 7  |-  ( A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x )
21 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
2221, 3eleqtrdi 2270 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
23 eluzelz 9526 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2422, 23syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ZZ )
25 eluzp1m1 9540 . . . . . . . . . . 11  |-  ( ( j  e.  ZZ  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  -> 
( k  -  1 )  e.  ( ZZ>= `  j ) )
2624, 25sylan 283 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( k  -  1 )  e.  ( ZZ>= `  j )
)
27 fveq2 5511 . . . . . . . . . . . . . 14  |-  ( m  =  ( k  - 
1 )  ->  (  seq M (  +  ,  F ) `  m
)  =  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )
28 fvoveq1 5892 . . . . . . . . . . . . . 14  |-  ( m  =  ( k  - 
1 )  ->  (  seq M (  +  ,  F ) `  (
m  +  1 ) )  =  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) )
2927, 28oveq12d 5887 . . . . . . . . . . . . 13  |-  ( m  =  ( k  - 
1 )  ->  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  -  (  seq M (  +  ,  F ) `  ( ( k  - 
1 )  +  1 ) ) ) )
3029fveq2d 5515 . . . . . . . . . . . 12  |-  ( m  =  ( k  - 
1 )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  =  ( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) ) )
3130breq1d 4010 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x  <->  ( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
3231rspcv 2837 . . . . . . . . . 10  |-  ( ( k  -  1 )  e.  ( ZZ>= `  j
)  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
3326, 32syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
34 serf0.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
353, 1, 34serf 10460 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
3635ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  seq M (  +  ,  F ) : Z --> CC )
373uztrn2 9534 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  ( k  -  1 )  e.  ( ZZ>= `  j ) )  -> 
( k  -  1 )  e.  Z )
3821, 26, 37syl2an2r 595 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( k  -  1 )  e.  Z )
3936, 38ffvelcdmd 5648 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  -  1 ) )  e.  CC )
403uztrn2 9534 . . . . . . . . . . . . . 14  |-  ( ( ( j  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  -> 
k  e.  Z )
419, 40sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  Z )
4236, 41ffvelcdmd 5648 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  CC )
4339, 42abssubd 11186 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  k )
) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  k )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) ) ) )
44 eluzelz 9526 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  (
j  +  1 ) )  ->  k  e.  ZZ )
4544adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ZZ )
4645zcnd 9365 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  CC )
47 ax-1cn 7895 . . . . . . . . . . . . . . 15  |-  1  e.  CC
48 npcan 8156 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
4946, 47, 48sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (
k  -  1 )  +  1 )  =  k )
5049fveq2d 5515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) )  =  (  seq M (  +  ,  F ) `  k
) )
5150oveq2d 5885 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  (
k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  -  (  seq M (  +  ,  F ) `  k ) ) )
5251fveq2d 5515 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  ( (
k  -  1 )  +  1 ) ) ) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  k
) ) ) )
531ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  M  e.  ZZ )
54 eluzp1p1 9542 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
5522, 54syl 14 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
56 eqid 2177 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
5756uztrn2 9534 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  +  1 )  e.  ( ZZ>= `  ( M  +  1
) )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
5855, 57sylan 283 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
59 fveq2 5511 . . . . . . . . . . . . . . . . 17  |-  ( k  =  a  ->  ( F `  k )  =  ( F `  a ) )
6059eleq1d 2246 . . . . . . . . . . . . . . . 16  |-  ( k  =  a  ->  (
( F `  k
)  e.  CC  <->  ( F `  a )  e.  CC ) )
6134ralrimiva 2550 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
6261ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  a  e.  (
ZZ>= `  M ) )  ->  A. k  e.  Z  ( F `  k )  e.  CC )
63 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  a  e.  (
ZZ>= `  M ) )  ->  a  e.  (
ZZ>= `  M ) )
6463, 3eleqtrrdi 2271 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  a  e.  (
ZZ>= `  M ) )  ->  a  e.  Z
)
6560, 62, 64rspcdva 2846 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  a  e.  (
ZZ>= `  M ) )  ->  ( F `  a )  e.  CC )
66 addcl 7927 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  b )  e.  CC )
6766adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  ( a  e.  CC  /\  b  e.  CC ) )  -> 
( a  +  b )  e.  CC )
6853, 58, 65, 67seq3m1 10454 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  =  ( (  seq M (  +  ,  F ) `  ( k  -  1 ) )  +  ( F `  k ) ) )
6968oveq1d 5884 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  k
)  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )  =  ( ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  +  ( F `  k ) )  -  (  seq M (  +  ,  F ) `  ( k  -  1 ) ) ) )
7034adantlr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7141, 70syldan 282 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( F `  k )  e.  CC )
7239, 71pncan2d 8260 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  +  ( F `  k ) )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )  =  ( F `  k ) )
7369, 72eqtr2d 2211 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( F `  k )  =  ( (  seq M (  +  ,  F ) `
 k )  -  (  seq M (  +  ,  F ) `  ( k  -  1 ) ) ) )
7473fveq2d 5515 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  k )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) ) ) )
7543, 52, 743eqtr4d 2220 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  ( (
k  -  1 )  +  1 ) ) ) )  =  ( abs `  ( F `
 k ) ) )
7675breq1d 4010 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( ( abs `  ( (  seq M (  +  ,  F ) `  (
k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x  <->  ( abs `  ( F `  k )
)  <  x )
)
7733, 76sylibd 149 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  ( F `  k )
)  <  x )
)
7877ralrimdva 2557 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x  ->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
7920, 78syl5 32 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
80 fveq2 5511 . . . . . . . 8  |-  ( n  =  ( j  +  1 )  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  ( j  +  1 ) ) )
8180raleqdv 2678 . . . . . . 7  |-  ( n  =  ( j  +  1 )  ->  ( A. k  e.  ( ZZ>=
`  n ) ( abs `  ( F `
 k ) )  <  x  <->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
8281rspcev 2841 . . . . . 6  |-  ( ( ( j  +  1 )  e.  Z  /\  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k
) )  <  x
)  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
839, 79, 82syl6an 1434 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
8483rexlimdva 2594 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
8584ralimdv 2545 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
867, 85mpd 13 . 2  |-  ( ph  ->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( abs `  ( F `  k
) )  <  x
)
87 serf0.3 . . 3  |-  ( ph  ->  F  e.  V )
88 eqidd 2178 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
893, 1, 87, 88, 34clim0c 11278 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
9086, 89mpbird 167 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4000   dom cdm 4623   -->wf 5208   ` cfv 5212  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    < clt 7982    - cmin 8118   ZZcz 9242   ZZ>=cuz 9517   RR+crp 9640    seqcseq 10431   abscabs 10990    ~~> cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271
This theorem is referenced by:  mertenslem2  11528
  Copyright terms: Public domain W3C validator