ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serf0 Unicode version

Theorem serf0 10795
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
climcauc.1  |-  Z  =  ( ZZ>= `  M )
serf0.2  |-  ( ph  ->  M  e.  ZZ )
serf0.3  |-  ( ph  ->  F  e.  V )
serf0.4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
serf0.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
serf0  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    k, F    k, M    k, Z    ph, k    k, V

Proof of Theorem serf0
Dummy variables  j  m  n  x  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serf0.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2 serf0.4 . . . . 5  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
3 climcauc.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
43climcaucn 10794 . . . . 5  |-  ( ( M  e.  ZZ  /\  seq M (  +  ,  F )  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  j
) ) )  < 
x ) )
51, 2, 4syl2anc 404 . . . 4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  j
) ) )  < 
x ) )
63cau3 10602 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x ) )
75, 6sylib 121 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x ) )
83peano2uzs 9126 . . . . . . 7  |-  ( j  e.  Z  ->  (
j  +  1 )  e.  Z )
98adantl 272 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  1 )  e.  Z )
10 eluzelz 9082 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  j
)  ->  m  e.  ZZ )
11 uzid 9087 . . . . . . . . . 10  |-  ( m  e.  ZZ  ->  m  e.  ( ZZ>= `  m )
)
12 peano2uz 9125 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  m
)  ->  ( m  +  1 )  e.  ( ZZ>= `  m )
)
13 fveq2 5318 . . . . . . . . . . . . . 14  |-  ( k  =  ( m  + 
1 )  ->  (  seq M (  +  ,  F ) `  k
)  =  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) )
1413oveq2d 5682 . . . . . . . . . . . . 13  |-  ( k  =  ( m  + 
1 )  ->  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) )  =  ( (  seq M (  +  ,  F ) `
 m )  -  (  seq M (  +  ,  F ) `  ( m  +  1
) ) ) )
1514fveq2d 5322 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  k
) ) )  =  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) ) )
1615breq1d 3861 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  (
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x  <->  ( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1716rspcv 2719 . . . . . . . . . 10  |-  ( ( m  +  1 )  e.  ( ZZ>= `  m
)  ->  ( A. k  e.  ( ZZ>= `  m ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 k ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1810, 11, 12, 174syl 18 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  m ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 k ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
1918adantld 273 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
(  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x ) )
2019ralimia 2437 . . . . . . 7  |-  ( A. m  e.  ( ZZ>= `  j ) ( (  seq M (  +  ,  F ) `  m )  e.  CC  /\ 
A. k  e.  (
ZZ>= `  m ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x )
21 simpr 109 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
2221, 3syl6eleq 2181 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
23 eluzelz 9082 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2422, 23syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ZZ )
25 eluzp1m1 9096 . . . . . . . . . . 11  |-  ( ( j  e.  ZZ  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  -> 
( k  -  1 )  e.  ( ZZ>= `  j ) )
2624, 25sylan 278 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( k  -  1 )  e.  ( ZZ>= `  j )
)
27 fveq2 5318 . . . . . . . . . . . . . 14  |-  ( m  =  ( k  - 
1 )  ->  (  seq M (  +  ,  F ) `  m
)  =  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )
28 fvoveq1 5689 . . . . . . . . . . . . . 14  |-  ( m  =  ( k  - 
1 )  ->  (  seq M (  +  ,  F ) `  (
m  +  1 ) )  =  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) )
2927, 28oveq12d 5684 . . . . . . . . . . . . 13  |-  ( m  =  ( k  - 
1 )  ->  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  -  (  seq M (  +  ,  F ) `  ( ( k  - 
1 )  +  1 ) ) ) )
3029fveq2d 5322 . . . . . . . . . . . 12  |-  ( m  =  ( k  - 
1 )  ->  ( abs `  ( (  seq M (  +  ,  F ) `  m
)  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  =  ( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) ) )
3130breq1d 3861 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x  <->  ( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
3231rspcv 2719 . . . . . . . . . 10  |-  ( ( k  -  1 )  e.  ( ZZ>= `  j
)  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
3326, 32syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x ) )
34 serf0.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
353, 1, 34serf 9954 . . . . . . . . . . . . . 14  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
3635ad2antrr 473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  seq M (  +  ,  F ) : Z --> CC )
373uztrn2 9090 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  ( k  -  1 )  e.  ( ZZ>= `  j ) )  -> 
( k  -  1 )  e.  Z )
3821, 26, 37syl2an2r 563 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( k  -  1 )  e.  Z )
3936, 38ffvelrnd 5449 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
k  -  1 ) )  e.  CC )
403uztrn2 9090 . . . . . . . . . . . . . 14  |-  ( ( ( j  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  -> 
k  e.  Z )
419, 40sylan 278 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  Z )
4236, 41ffvelrnd 5449 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  e.  CC )
4339, 42abssubd 10680 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  k )
) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  k )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) ) ) )
44 eluzelz 9082 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  (
j  +  1 ) )  ->  k  e.  ZZ )
4544adantl 272 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ZZ )
4645zcnd 8923 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  CC )
47 ax-1cn 7492 . . . . . . . . . . . . . . 15  |-  1  e.  CC
48 npcan 7745 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  - 
1 )  +  1 )  =  k )
4946, 47, 48sylancl 405 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (
k  -  1 )  +  1 )  =  k )
5049fveq2d 5322 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) )  =  (  seq M (  +  ,  F ) `  k
) )
5150oveq2d 5682 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  (
k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) )  =  ( (  seq M (  +  ,  F ) `
 ( k  - 
1 ) )  -  (  seq M (  +  ,  F ) `  k ) ) )
5251fveq2d 5322 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  ( (
k  -  1 )  +  1 ) ) ) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  ( k  -  1 ) )  -  (  seq M (  +  ,  F ) `  k
) ) ) )
531ad2antrr 473 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  M  e.  ZZ )
54 eluzp1p1 9098 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
5522, 54syl 14 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
56 eqid 2089 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
5756uztrn2 9090 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  +  1 )  e.  ( ZZ>= `  ( M  +  1
) )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
5855, 57sylan 278 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
59 fveq2 5318 . . . . . . . . . . . . . . . . 17  |-  ( k  =  a  ->  ( F `  k )  =  ( F `  a ) )
6059eleq1d 2157 . . . . . . . . . . . . . . . 16  |-  ( k  =  a  ->  (
( F `  k
)  e.  CC  <->  ( F `  a )  e.  CC ) )
6134ralrimiva 2447 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  e.  CC )
6261ad3antrrr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  a  e.  (
ZZ>= `  M ) )  ->  A. k  e.  Z  ( F `  k )  e.  CC )
63 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  a  e.  (
ZZ>= `  M ) )  ->  a  e.  (
ZZ>= `  M ) )
6463, 3syl6eleqr 2182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  a  e.  (
ZZ>= `  M ) )  ->  a  e.  Z
)
6560, 62, 64rspcdva 2728 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  a  e.  (
ZZ>= `  M ) )  ->  ( F `  a )  e.  CC )
66 addcl 7521 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  b )  e.  CC )
6766adantl 272 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  ( j  +  1 ) ) )  /\  ( a  e.  CC  /\  b  e.  CC ) )  -> 
( a  +  b )  e.  CC )
6853, 58, 65, 67seq3m1 9943 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  k
)  =  ( (  seq M (  +  ,  F ) `  ( k  -  1 ) )  +  ( F `  k ) ) )
6968oveq1d 5681 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  k
)  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )  =  ( ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  +  ( F `  k ) )  -  (  seq M (  +  ,  F ) `  ( k  -  1 ) ) ) )
7034adantlr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
7141, 70syldan 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( F `  k )  e.  CC )
7239, 71pncan2d 7849 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( (
(  seq M (  +  ,  F ) `  ( k  -  1 ) )  +  ( F `  k ) )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) )  =  ( F `  k ) )
7369, 72eqtr2d 2122 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( F `  k )  =  ( (  seq M (  +  ,  F ) `
 k )  -  (  seq M (  +  ,  F ) `  ( k  -  1 ) ) ) )
7473fveq2d 5322 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( (  seq M (  +  ,  F ) `  k )  -  (  seq M (  +  ,  F ) `  (
k  -  1 ) ) ) ) )
7543, 52, 743eqtr4d 2131 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( abs `  ( (  seq M
(  +  ,  F
) `  ( k  -  1 ) )  -  (  seq M
(  +  ,  F
) `  ( (
k  -  1 )  +  1 ) ) ) )  =  ( abs `  ( F `
 k ) ) )
7675breq1d 3861 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( ( abs `  ( (  seq M (  +  ,  F ) `  (
k  -  1 ) )  -  (  seq M (  +  ,  F ) `  (
( k  -  1 )  +  1 ) ) ) )  < 
x  <->  ( abs `  ( F `  k )
)  <  x )
)
7733, 76sylibd 148 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  ( j  +  1 ) ) )  ->  ( A. m  e.  ( ZZ>= `  j ) ( abs `  ( (  seq M
(  +  ,  F
) `  m )  -  (  seq M (  +  ,  F ) `
 ( m  + 
1 ) ) ) )  <  x  -> 
( abs `  ( F `  k )
)  <  x )
)
7877ralrimdva 2454 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( abs `  ( (  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  (
m  +  1 ) ) ) )  < 
x  ->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
7920, 78syl5 32 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
80 fveq2 5318 . . . . . . . 8  |-  ( n  =  ( j  +  1 )  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  ( j  +  1 ) ) )
8180raleqdv 2569 . . . . . . 7  |-  ( n  =  ( j  +  1 )  ->  ( A. k  e.  ( ZZ>=
`  n ) ( abs `  ( F `
 k ) )  <  x  <->  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k )
)  <  x )
)
8281rspcev 2723 . . . . . 6  |-  ( ( ( j  +  1 )  e.  Z  /\  A. k  e.  ( ZZ>= `  ( j  +  1 ) ) ( abs `  ( F `  k
) )  <  x
)  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
839, 79, 82syl6an 1369 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
8483rexlimdva 2490 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. m  e.  ( ZZ>= `  j )
( (  seq M
(  +  ,  F
) `  m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
8584ralimdv 2443 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. m  e.  ( ZZ>=
`  j ) ( (  seq M (  +  ,  F ) `
 m )  e.  CC  /\  A. k  e.  ( ZZ>= `  m )
( abs `  (
(  seq M (  +  ,  F ) `  m )  -  (  seq M (  +  ,  F ) `  k
) ) )  < 
x )  ->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
867, 85mpd 13 . 2  |-  ( ph  ->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( abs `  ( F `  k
) )  <  x
)
87 serf0.3 . . 3  |-  ( ph  ->  F  e.  V )
88 eqidd 2090 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
893, 1, 87, 88, 34clim0c 10728 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( abs `  ( F `  k )
)  <  x )
)
9086, 89mpbird 166 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   A.wral 2360   E.wrex 2361   class class class wbr 3851   dom cdm 4451   -->wf 5024   ` cfv 5028  (class class class)co 5666   CCcc 7402   0cc0 7404   1c1 7405    + caddc 7407    < clt 7576    - cmin 7707   ZZcz 8804   ZZ>=cuz 9073   RR+crp 9188    seqcseq 9906   abscabs 10484    ~~> cli 10720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517  ax-arch 7518  ax-caucvg 7519
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194  df-inn 8477  df-2 8535  df-3 8536  df-4 8537  df-n0 8728  df-z 8805  df-uz 9074  df-rp 9189  df-iseq 9907  df-seq3 9908  df-exp 10009  df-cj 10330  df-re 10331  df-im 10332  df-rsqrt 10485  df-abs 10486  df-clim 10721
This theorem is referenced by:  mertenslem2  10984
  Copyright terms: Public domain W3C validator