ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1o Unicode version

Theorem fcof1o 5780
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fcof1o  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )

Proof of Theorem fcof1o
StepHypRef Expression
1 fcof1 5774 . . . 4  |-  ( ( F : A --> B  /\  ( G  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
21ad2ant2rl 511 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -1-1-> B )
3 fcofo 5775 . . . . 5  |-  ( ( F : A --> B  /\  G : B --> A  /\  ( F  o.  G
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
433expa 1203 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  ( F  o.  G )  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
54adantrr 479 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -onto-> B )
6 df-f1o 5215 . . 3  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
72, 5, 6sylanbrc 417 . 2  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -1-1-onto-> B )
8 simprl 529 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F  o.  G )  =  (  _I  |`  B ) )
98coeq2d 4782 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  ( F  o.  G )
)  =  ( `' F  o.  (  _I  |`  B ) ) )
10 coass 5139 . . . 4  |-  ( ( `' F  o.  F
)  o.  G )  =  ( `' F  o.  ( F  o.  G
) )
11 f1ococnv1 5482 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
127, 11syl 14 . . . . . 6  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  F
)  =  (  _I  |`  A ) )
1312coeq1d 4781 . . . . 5  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
( `' F  o.  F )  o.  G
)  =  ( (  _I  |`  A )  o.  G ) )
14 fcoi2 5389 . . . . . 6  |-  ( G : B --> A  -> 
( (  _I  |`  A )  o.  G )  =  G )
1514ad2antlr 489 . . . . 5  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
(  _I  |`  A )  o.  G )  =  G )
1613, 15eqtrd 2208 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
( `' F  o.  F )  o.  G
)  =  G )
1710, 16eqtr3id 2222 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  ( F  o.  G )
)  =  G )
18 f1ocnv 5466 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
19 f1of 5453 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
20 fcoi1 5388 . . . 4  |-  ( `' F : B --> A  -> 
( `' F  o.  (  _I  |`  B ) )  =  `' F
)
217, 18, 19, 204syl 18 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  (  _I  |`  B ) )  =  `' F )
229, 17, 213eqtr3rd 2217 . 2  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  `' F  =  G )
237, 22jca 306 1  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    _I cid 4282   `'ccnv 4619    |` cres 4622    o. ccom 4624   -->wf 5204   -1-1->wf1 5205   -onto->wfo 5206   -1-1-onto->wf1o 5207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216
This theorem is referenced by:  txswaphmeo  13401
  Copyright terms: Public domain W3C validator