Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fcof1o | Unicode version |
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
fcof1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1 5762 | . . . 4 | |
2 | 1 | ad2ant2rl 508 | . . 3 |
3 | fcofo 5763 | . . . . 5 | |
4 | 3 | 3expa 1198 | . . . 4 |
5 | 4 | adantrr 476 | . . 3 |
6 | df-f1o 5205 | . . 3 | |
7 | 2, 5, 6 | sylanbrc 415 | . 2 |
8 | simprl 526 | . . . 4 | |
9 | 8 | coeq2d 4773 | . . 3 |
10 | coass 5129 | . . . 4 | |
11 | f1ococnv1 5471 | . . . . . . 7 | |
12 | 7, 11 | syl 14 | . . . . . 6 |
13 | 12 | coeq1d 4772 | . . . . 5 |
14 | fcoi2 5379 | . . . . . 6 | |
15 | 14 | ad2antlr 486 | . . . . 5 |
16 | 13, 15 | eqtrd 2203 | . . . 4 |
17 | 10, 16 | eqtr3id 2217 | . . 3 |
18 | f1ocnv 5455 | . . . 4 | |
19 | f1of 5442 | . . . 4 | |
20 | fcoi1 5378 | . . . 4 | |
21 | 7, 18, 19, 20 | 4syl 18 | . . 3 |
22 | 9, 17, 21 | 3eqtr3rd 2212 | . 2 |
23 | 7, 22 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 cid 4273 ccnv 4610 cres 4613 ccom 4615 wf 5194 wf1 5195 wfo 5196 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: txswaphmeo 13115 |
Copyright terms: Public domain | W3C validator |