ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1o Unicode version

Theorem fcof1o 5913
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fcof1o  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )

Proof of Theorem fcof1o
StepHypRef Expression
1 fcof1 5907 . . . 4  |-  ( ( F : A --> B  /\  ( G  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
21ad2ant2rl 511 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -1-1-> B )
3 fcofo 5908 . . . . 5  |-  ( ( F : A --> B  /\  G : B --> A  /\  ( F  o.  G
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
433expa 1227 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  ( F  o.  G )  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
54adantrr 479 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -onto-> B )
6 df-f1o 5325 . . 3  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
72, 5, 6sylanbrc 417 . 2  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -1-1-onto-> B )
8 simprl 529 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F  o.  G )  =  (  _I  |`  B ) )
98coeq2d 4884 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  ( F  o.  G )
)  =  ( `' F  o.  (  _I  |`  B ) ) )
10 coass 5247 . . . 4  |-  ( ( `' F  o.  F
)  o.  G )  =  ( `' F  o.  ( F  o.  G
) )
11 f1ococnv1 5601 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
127, 11syl 14 . . . . . 6  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  F
)  =  (  _I  |`  A ) )
1312coeq1d 4883 . . . . 5  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
( `' F  o.  F )  o.  G
)  =  ( (  _I  |`  A )  o.  G ) )
14 fcoi2 5507 . . . . . 6  |-  ( G : B --> A  -> 
( (  _I  |`  A )  o.  G )  =  G )
1514ad2antlr 489 . . . . 5  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
(  _I  |`  A )  o.  G )  =  G )
1613, 15eqtrd 2262 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
( `' F  o.  F )  o.  G
)  =  G )
1710, 16eqtr3id 2276 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  ( F  o.  G )
)  =  G )
18 f1ocnv 5585 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
19 f1of 5572 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
20 fcoi1 5506 . . . 4  |-  ( `' F : B --> A  -> 
( `' F  o.  (  _I  |`  B ) )  =  `' F
)
217, 18, 19, 204syl 18 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  (  _I  |`  B ) )  =  `' F )
229, 17, 213eqtr3rd 2271 . 2  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  `' F  =  G )
237, 22jca 306 1  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    _I cid 4379   `'ccnv 4718    |` cres 4721    o. ccom 4723   -->wf 5314   -1-1->wf1 5315   -onto->wfo 5316   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  txswaphmeo  14995
  Copyright terms: Public domain W3C validator