Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fcof1o | Unicode version |
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
fcof1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1 5751 | . . . 4 | |
2 | 1 | ad2ant2rl 503 | . . 3 |
3 | fcofo 5752 | . . . . 5 | |
4 | 3 | 3expa 1193 | . . . 4 |
5 | 4 | adantrr 471 | . . 3 |
6 | df-f1o 5195 | . . 3 | |
7 | 2, 5, 6 | sylanbrc 414 | . 2 |
8 | simprl 521 | . . . 4 | |
9 | 8 | coeq2d 4766 | . . 3 |
10 | coass 5122 | . . . 4 | |
11 | f1ococnv1 5461 | . . . . . . 7 | |
12 | 7, 11 | syl 14 | . . . . . 6 |
13 | 12 | coeq1d 4765 | . . . . 5 |
14 | fcoi2 5369 | . . . . . 6 | |
15 | 14 | ad2antlr 481 | . . . . 5 |
16 | 13, 15 | eqtrd 2198 | . . . 4 |
17 | 10, 16 | eqtr3id 2213 | . . 3 |
18 | f1ocnv 5445 | . . . 4 | |
19 | f1of 5432 | . . . 4 | |
20 | fcoi1 5368 | . . . 4 | |
21 | 7, 18, 19, 20 | 4syl 18 | . . 3 |
22 | 9, 17, 21 | 3eqtr3rd 2207 | . 2 |
23 | 7, 22 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 cid 4266 ccnv 4603 cres 4606 ccom 4608 wf 5184 wf1 5185 wfo 5186 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: txswaphmeo 12961 |
Copyright terms: Public domain | W3C validator |