Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fcof1o | Unicode version |
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
fcof1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1 5774 | . . . 4 | |
2 | 1 | ad2ant2rl 511 | . . 3 |
3 | fcofo 5775 | . . . . 5 | |
4 | 3 | 3expa 1203 | . . . 4 |
5 | 4 | adantrr 479 | . . 3 |
6 | df-f1o 5215 | . . 3 | |
7 | 2, 5, 6 | sylanbrc 417 | . 2 |
8 | simprl 529 | . . . 4 | |
9 | 8 | coeq2d 4782 | . . 3 |
10 | coass 5139 | . . . 4 | |
11 | f1ococnv1 5482 | . . . . . . 7 | |
12 | 7, 11 | syl 14 | . . . . . 6 |
13 | 12 | coeq1d 4781 | . . . . 5 |
14 | fcoi2 5389 | . . . . . 6 | |
15 | 14 | ad2antlr 489 | . . . . 5 |
16 | 13, 15 | eqtrd 2208 | . . . 4 |
17 | 10, 16 | eqtr3id 2222 | . . 3 |
18 | f1ocnv 5466 | . . . 4 | |
19 | f1of 5453 | . . . 4 | |
20 | fcoi1 5388 | . . . 4 | |
21 | 7, 18, 19, 20 | 4syl 18 | . . 3 |
22 | 9, 17, 21 | 3eqtr3rd 2217 | . 2 |
23 | 7, 22 | jca 306 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 cid 4282 ccnv 4619 cres 4622 ccom 4624 wf 5204 wf1 5205 wfo 5206 wf1o 5207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 |
This theorem is referenced by: txswaphmeo 13401 |
Copyright terms: Public domain | W3C validator |