ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1o Unicode version

Theorem fcof1o 5757
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fcof1o  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )

Proof of Theorem fcof1o
StepHypRef Expression
1 fcof1 5751 . . . 4  |-  ( ( F : A --> B  /\  ( G  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
21ad2ant2rl 503 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -1-1-> B )
3 fcofo 5752 . . . . 5  |-  ( ( F : A --> B  /\  G : B --> A  /\  ( F  o.  G
)  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
433expa 1193 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  ( F  o.  G )  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
54adantrr 471 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -onto-> B )
6 df-f1o 5195 . . 3  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
72, 5, 6sylanbrc 414 . 2  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  F : A -1-1-onto-> B )
8 simprl 521 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F  o.  G )  =  (  _I  |`  B ) )
98coeq2d 4766 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  ( F  o.  G )
)  =  ( `' F  o.  (  _I  |`  B ) ) )
10 coass 5122 . . . 4  |-  ( ( `' F  o.  F
)  o.  G )  =  ( `' F  o.  ( F  o.  G
) )
11 f1ococnv1 5461 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
127, 11syl 14 . . . . . 6  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  F
)  =  (  _I  |`  A ) )
1312coeq1d 4765 . . . . 5  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
( `' F  o.  F )  o.  G
)  =  ( (  _I  |`  A )  o.  G ) )
14 fcoi2 5369 . . . . . 6  |-  ( G : B --> A  -> 
( (  _I  |`  A )  o.  G )  =  G )
1514ad2antlr 481 . . . . 5  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
(  _I  |`  A )  o.  G )  =  G )
1613, 15eqtrd 2198 . . . 4  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  (
( `' F  o.  F )  o.  G
)  =  G )
1710, 16eqtr3id 2213 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  ( F  o.  G )
)  =  G )
18 f1ocnv 5445 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
19 f1of 5432 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
20 fcoi1 5368 . . . 4  |-  ( `' F : B --> A  -> 
( `' F  o.  (  _I  |`  B ) )  =  `' F
)
217, 18, 19, 204syl 18 . . 3  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( `' F  o.  (  _I  |`  B ) )  =  `' F )
229, 17, 213eqtr3rd 2207 . 2  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  `' F  =  G )
237, 22jca 304 1  |-  ( ( ( F : A --> B  /\  G : B --> A )  /\  (
( F  o.  G
)  =  (  _I  |`  B )  /\  ( G  o.  F )  =  (  _I  |`  A ) ) )  ->  ( F : A -1-1-onto-> B  /\  `' F  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    _I cid 4266   `'ccnv 4603    |` cres 4606    o. ccom 4608   -->wf 5184   -1-1->wf1 5185   -onto->wfo 5186   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  txswaphmeo  12961
  Copyright terms: Public domain W3C validator