| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fcof1o | Unicode version | ||
| Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| fcof1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcof1 5830 |
. . . 4
| |
| 2 | 1 | ad2ant2rl 511 |
. . 3
|
| 3 | fcofo 5831 |
. . . . 5
| |
| 4 | 3 | 3expa 1205 |
. . . 4
|
| 5 | 4 | adantrr 479 |
. . 3
|
| 6 | df-f1o 5265 |
. . 3
| |
| 7 | 2, 5, 6 | sylanbrc 417 |
. 2
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | 8 | coeq2d 4828 |
. . 3
|
| 10 | coass 5188 |
. . . 4
| |
| 11 | f1ococnv1 5533 |
. . . . . . 7
| |
| 12 | 7, 11 | syl 14 |
. . . . . 6
|
| 13 | 12 | coeq1d 4827 |
. . . . 5
|
| 14 | fcoi2 5439 |
. . . . . 6
| |
| 15 | 14 | ad2antlr 489 |
. . . . 5
|
| 16 | 13, 15 | eqtrd 2229 |
. . . 4
|
| 17 | 10, 16 | eqtr3id 2243 |
. . 3
|
| 18 | f1ocnv 5517 |
. . . 4
| |
| 19 | f1of 5504 |
. . . 4
| |
| 20 | fcoi1 5438 |
. . . 4
| |
| 21 | 7, 18, 19, 20 | 4syl 18 |
. . 3
|
| 22 | 9, 17, 21 | 3eqtr3rd 2238 |
. 2
|
| 23 | 7, 22 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 |
| This theorem is referenced by: txswaphmeo 14557 |
| Copyright terms: Public domain | W3C validator |