| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abrexco | Unicode version | ||
| Description: Composition of two image
maps |
| Ref | Expression |
|---|---|
| abrexco.1 |
|
| abrexco.2 |
|
| Ref | Expression |
|---|---|
| abrexco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2489 |
. . . . 5
| |
| 2 | vex 2774 |
. . . . . . . . 9
| |
| 3 | eqeq1 2211 |
. . . . . . . . . 10
| |
| 4 | 3 | rexbidv 2506 |
. . . . . . . . 9
|
| 5 | 2, 4 | elab 2916 |
. . . . . . . 8
|
| 6 | 5 | anbi1i 458 |
. . . . . . 7
|
| 7 | r19.41v 2661 |
. . . . . . 7
| |
| 8 | 6, 7 | bitr4i 187 |
. . . . . 6
|
| 9 | 8 | exbii 1627 |
. . . . 5
|
| 10 | 1, 9 | bitri 184 |
. . . 4
|
| 11 | rexcom4 2794 |
. . . 4
| |
| 12 | 10, 11 | bitr4i 187 |
. . 3
|
| 13 | abrexco.1 |
. . . . 5
| |
| 14 | abrexco.2 |
. . . . . 6
| |
| 15 | 14 | eqeq2d 2216 |
. . . . 5
|
| 16 | 13, 15 | ceqsexv 2810 |
. . . 4
|
| 17 | 16 | rexbii 2512 |
. . 3
|
| 18 | 12, 17 | bitri 184 |
. 2
|
| 19 | 18 | abbii 2320 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 |
| This theorem is referenced by: restco 14617 |
| Copyright terms: Public domain | W3C validator |