Home Intuitionistic Logic ExplorerTheorem List (p. 58 of 134) < Previous  Next > Browser slow? Try the Unicode version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5701-5800   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremfliftval 5701* The value of the function . (Contributed by Mario Carneiro, 23-Dec-2016.)

Theoremisoeq1 5702 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)

Theoremisoeq2 5703 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)

Theoremisoeq3 5704 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)

Theoremisoeq4 5705 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)

Theoremisoeq5 5706 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)

Theoremnfiso 5707 Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)

Theoremisof1o 5708 An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)

Theoremisorel 5709 An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)

Theoremisoresbr 5710* A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.)

Theoremisoid 5711 Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)

Theoremisocnv 5712 Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)

Theoremisocnv2 5713 Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)

Theoremisores2 5714 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)

Theoremisores1 5715 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)

Theoremisores3 5716 Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)

Theoremisotr 5717 Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)

Theoremiso0 5718 The empty set is an isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.)

Theoremisoini 5719 Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)

Theoremisoini2 5720 Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)

Theoremisoselem 5721* Lemma for isose 5722. (Contributed by Mario Carneiro, 23-Jun-2015.)
Se Se

Theoremisose 5722 An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
Se Se

Theoremisopolem 5723 Lemma for isopo 5724. (Contributed by Stefan O'Rear, 16-Nov-2014.)

Theoremisopo 5724 An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)

Theoremisosolem 5725 Lemma for isoso 5726. (Contributed by Stefan O'Rear, 16-Nov-2014.)

Theoremisoso 5726 An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)

Theoremf1oiso 5727* Any one-to-one onto function determines an isomorphism with an induced relation . Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)

Theoremf1oiso2 5728* Any one-to-one onto function determines an isomorphism with an induced relation . (Contributed by Mario Carneiro, 9-Mar-2013.)

2.6.9  Restricted iota (description binder)

Syntaxcrio 5729 Extend class notation with restricted description binder.

Definitiondf-riota 5730 Define restricted description binder. In case there is no unique such that holds, it evaluates to the empty set. See also comments for df-iota 5088. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)

Theoremriotaeqdv 5731* Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)

Theoremriotabidv 5732* Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.)

Theoremriotaeqbidv 5733* Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)

Theoremriotaexg 5734* Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)

Theoremriotav 5735 An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)

Theoremriotauni 5736 Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)

Theoremnfriota1 5737* The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)

Theoremnfriotadxy 5738* Deduction version of nfriota 5739. (Contributed by Jim Kingdon, 12-Jan-2019.)

Theoremnfriota 5739* A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)

Theoremcbvriota 5740* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)

Theoremcbvriotav 5741* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)

Theoremcsbriotag 5742* Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)

Theoremriotacl2 5743 Membership law for "the unique element in such that ."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

Theoremriotacl 5744* Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)

Theoremriotasbc 5745 Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

Theoremriotabidva 5746* Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2674 analog.) (Contributed by NM, 17-Jan-2012.)

Theoremriotabiia 5747 Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2671 analog.) (Contributed by NM, 16-Jan-2012.)

Theoremriota1 5748* Property of restricted iota. Compare iota1 5102. (Contributed by Mario Carneiro, 15-Oct-2016.)

Theoremriota1a 5749 Property of iota. (Contributed by NM, 23-Aug-2011.)

Theoremriota2df 5750* A deduction version of riota2f 5751. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)

Theoremriota2f 5751* This theorem shows a condition that allows us to represent a descriptor with a class expression . (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)

Theoremriota2 5752* This theorem shows a condition that allows us to represent a descriptor with a class expression . (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.)

Theoremriotaprop 5753* Properties of a restricted definite description operator. Todo (df-riota 5730 update): can some uses of riota2f 5751 be shortened with this? (Contributed by NM, 23-Nov-2013.)

Theoremriota5f 5754* A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)

Theoremriota5 5755* A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)

Theoremriotass2 5756* Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)

Theoremriotass 5757* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)

Theoremmoriotass 5758* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)

Theoremsnriota 5759 A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)

Theoremeusvobj2 5760* Specify the same property in two ways when class is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

Theoremeusvobj1 5761* Specify the same object in two ways when class is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)

Theoremf1ofveu 5762* There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)

Theoremf1ocnvfv3 5763* Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

Theoremriotaund 5764* Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)

Theoremacexmidlema 5765* Lemma for acexmid 5773. (Contributed by Jim Kingdon, 6-Aug-2019.)

Theoremacexmidlemb 5766* Lemma for acexmid 5773. (Contributed by Jim Kingdon, 6-Aug-2019.)

Theoremacexmidlemph 5767* Lemma for acexmid 5773. (Contributed by Jim Kingdon, 6-Aug-2019.)

Theoremacexmidlemab 5768* Lemma for acexmid 5773. (Contributed by Jim Kingdon, 6-Aug-2019.)

Theoremacexmidlemcase 5769* Lemma for acexmid 5773. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at equals , (2) the choice function evaluated at equals , and (3) the choice function evaluated at equals and the choice function evaluated at equals .

Because of the way we represent the choice function , the choice function evaluated at is and the choice function evaluated at is . Other than the difference in notation these work just as and would if were a function as defined by df-fun 5125.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at equals , then and likewise for .

(Contributed by Jim Kingdon, 7-Aug-2019.)

Theoremacexmidlem1 5770* Lemma for acexmid 5773. List the cases identified in acexmidlemcase 5769 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)

Theoremacexmidlem2 5771* Lemma for acexmid 5773. This builds on acexmidlem1 5770 by noting that every element of is inhabited.

(Note that is not quite a function in the df-fun 5125 sense because it uses ordered pairs as described in opthreg 4471 rather than df-op 3536).

The set is also found in onsucelsucexmidlem 4444.

(Contributed by Jim Kingdon, 5-Aug-2019.)

Theoremacexmidlemv 5772* Lemma for acexmid 5773.

This is acexmid 5773 with additional distinct variable constraints, most notably between and .

(Contributed by Jim Kingdon, 6-Aug-2019.)

Theoremacexmid 5773* The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function provides a value when is inhabited (as opposed to nonempty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

For this theorem stated using the df-ac 7067 and df-exmid 4119 syntaxes, see exmidac 7070. (Contributed by Jim Kingdon, 4-Aug-2019.)

2.6.10  Operations

Syntaxco 5774 Extend class notation to include the value of an operation (such as + ) for two arguments and . Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous.

Syntaxcoprab 5775 Extend class notation to include class abstraction (class builder) of nested ordered pairs.

Syntaxcmpo 5776 Extend the definition of a class to include maps-to notation for defining an operation via a rule.

Definitiondf-ov 5777 Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation and its arguments and - will be useful for proving meaningful theorems. For example, if class is the operation + and arguments and are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes and/or are proper classes (i.e. are not sets); see ovprc1 5807 and ovprc2 5808. On the other hand, we often find uses for this definition when is a proper class. is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5778. (Contributed by NM, 28-Feb-1995.)

Definitiondf-oprab 5778* Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally , , and are distinct, although the definition doesn't strictly require it. See df-ov 5777 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpo 5906. (Contributed by NM, 12-Mar-1995.)

Definitiondf-mpo 5779* Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from (in ) to ." An extension of df-mpt 3991 for two arguments. (Contributed by NM, 17-Feb-2008.)

Theoremoveq 5780 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)

Theoremoveq1 5781 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)

Theoremoveq2 5782 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)

Theoremoveq12 5783 Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.)

Theoremoveq1i 5784 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)

Theoremoveq2i 5785 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)

Theoremoveq12i 5786 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)

Theoremoveqi 5787 Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)

Theoremoveq123i 5788 Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)

Theoremoveq1d 5789 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)

Theoremoveq2d 5790 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)

Theoremoveqd 5791 Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)

Theoremoveq12d 5792 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)

Theoremoveqan12d 5793 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)

Theoremoveqan12rd 5794 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)

Theoremoveq123d 5795 Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)

Theoremfvoveq1d 5796 Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)

Theoremfvoveq1 5797 Equality theorem for nested function and operation value. Closed form of fvoveq1d 5796. (Contributed by AV, 23-Jul-2022.)

Theoremovanraleqv 5798* Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)

Theoremimbrov2fvoveq 5799 Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)

Theoremnfovd 5800 Deduction version of bound-variable hypothesis builder nfov 5801. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13362
 Copyright terms: Public domain < Previous  Next >