ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restco Unicode version

Theorem restco 14617
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restco  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )

Proof of Theorem restco
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . 5  |-  y  e. 
_V
21inex1 4177 . . . 4  |-  ( y  i^i  A )  e. 
_V
3 ineq1 3366 . . . . 5  |-  ( x  =  ( y  i^i 
A )  ->  (
x  i^i  B )  =  ( ( y  i^i  A )  i^i 
B ) )
4 inass 3382 . . . . 5  |-  ( ( y  i^i  A )  i^i  B )  =  ( y  i^i  ( A  i^i  B ) )
53, 4eqtrdi 2253 . . . 4  |-  ( x  =  ( y  i^i 
A )  ->  (
x  i^i  B )  =  ( y  i^i  ( A  i^i  B
) ) )
62, 5abrexco 5827 . . 3  |-  { z  |  E. x  e. 
{ w  |  E. y  e.  J  w  =  ( y  i^i 
A ) } z  =  ( x  i^i 
B ) }  =  { z  |  E. y  e.  J  z  =  ( y  i^i  ( A  i^i  B
) ) }
7 eqid 2204 . . . . . 6  |-  ( y  e.  J  |->  ( y  i^i  A ) )  =  ( y  e.  J  |->  ( y  i^i 
A ) )
87rnmpt 4925 . . . . 5  |-  ran  (
y  e.  J  |->  ( y  i^i  A ) )  =  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) }
9 mpteq1 4127 . . . . 5  |-  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )  =  {
w  |  E. y  e.  J  w  =  ( y  i^i  A
) }  ->  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  ( x  e.  {
w  |  E. y  e.  J  w  =  ( y  i^i  A
) }  |->  ( x  i^i  B ) ) )
108, 9ax-mp 5 . . . 4  |-  ( x  e.  ran  ( y  e.  J  |->  ( y  i^i  A ) ) 
|->  ( x  i^i  B
) )  =  ( x  e.  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) }  |->  ( x  i^i  B ) )
1110rnmpt 4925 . . 3  |-  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  { z  |  E. x  e.  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) } z  =  ( x  i^i 
B ) }
12 eqid 2204 . . . 4  |-  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )  =  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )
1312rnmpt 4925 . . 3  |-  ran  (
y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )  =  { z  |  E. y  e.  J  z  =  ( y  i^i  ( A  i^i  B ) ) }
146, 11, 133eqtr4i 2235 . 2  |-  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B
) ) )
15 restval 13048 . . . . 5  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( y  e.  J  |->  ( y  i^i  A
) ) )
16153adant3 1019 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  A )  =  ran  ( y  e.  J  |->  ( y  i^i  A
) ) )
1716oveq1d 5958 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )t  B ) )
18 restfn 13046 . . . . . 6  |-t  Fn  ( _V  X.  _V )
19 simp1 999 . . . . . . 7  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  J  e.  V )
2019elexd 2784 . . . . . 6  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  J  e.  _V )
21 simp2 1000 . . . . . . 7  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  A  e.  W )
2221elexd 2784 . . . . . 6  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  A  e.  _V )
23 fnovex 5976 . . . . . 6  |-  ( (t  Fn  ( _V  X.  _V )  /\  J  e.  _V  /\  A  e.  _V )  ->  ( Jt  A )  e.  _V )
2418, 20, 22, 23mp3an2i 1354 . . . . 5  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  A )  e.  _V )
2516, 24eqeltrrd 2282 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ran  ( y  e.  J  |->  ( y  i^i 
A ) )  e. 
_V )
26 simp3 1001 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  B  e.  X )
27 restval 13048 . . . 4  |-  ( ( ran  ( y  e.  J  |->  ( y  i^i 
A ) )  e. 
_V  /\  B  e.  X )  ->  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )t  B )  =  ran  ( x  e.  ran  ( y  e.  J  |->  ( y  i^i  A
) )  |->  ( x  i^i  B ) ) )
2825, 26, 27syl2anc 411 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ran  ( y  e.  J  |->  ( y  i^i  A ) )t  B )  =  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) ) )
2917, 28eqtrd 2237 . 2  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) ) )
30 inex1g 4179 . . . 4  |-  ( A  e.  W  ->  ( A  i^i  B )  e. 
_V )
31303ad2ant2 1021 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( A  i^i  B
)  e.  _V )
32 restval 13048 . . 3  |-  ( ( J  e.  V  /\  ( A  i^i  B )  e.  _V )  -> 
( Jt  ( A  i^i  B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) ) )
3319, 31, 32syl2anc 411 . 2  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  ( A  i^i  B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) ) )
3414, 29, 333eqtr4a 2263 1  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1372    e. wcel 2175   {cab 2190   E.wrex 2484   _Vcvv 2771    i^i cin 3164    |-> cmpt 4104    X. cxp 4672   ran crn 4675    Fn wfn 5265  (class class class)co 5943   ↾t crest 13042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-rest 13044
This theorem is referenced by:  restabs  14618  restin  14619
  Copyright terms: Public domain W3C validator