| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restco | Unicode version | ||
| Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . . . 5
| |
| 2 | 1 | inex1 4217 |
. . . 4
|
| 3 | ineq1 3398 |
. . . . 5
| |
| 4 | inass 3414 |
. . . . 5
| |
| 5 | 3, 4 | eqtrdi 2278 |
. . . 4
|
| 6 | 2, 5 | abrexco 5882 |
. . 3
|
| 7 | eqid 2229 |
. . . . . 6
| |
| 8 | 7 | rnmpt 4971 |
. . . . 5
|
| 9 | mpteq1 4167 |
. . . . 5
| |
| 10 | 8, 9 | ax-mp 5 |
. . . 4
|
| 11 | 10 | rnmpt 4971 |
. . 3
|
| 12 | eqid 2229 |
. . . 4
| |
| 13 | 12 | rnmpt 4971 |
. . 3
|
| 14 | 6, 11, 13 | 3eqtr4i 2260 |
. 2
|
| 15 | restval 13273 |
. . . . 5
| |
| 16 | 15 | 3adant3 1041 |
. . . 4
|
| 17 | 16 | oveq1d 6015 |
. . 3
|
| 18 | restfn 13271 |
. . . . . 6
| |
| 19 | simp1 1021 |
. . . . . . 7
| |
| 20 | 19 | elexd 2813 |
. . . . . 6
|
| 21 | simp2 1022 |
. . . . . . 7
| |
| 22 | 21 | elexd 2813 |
. . . . . 6
|
| 23 | fnovex 6033 |
. . . . . 6
| |
| 24 | 18, 20, 22, 23 | mp3an2i 1376 |
. . . . 5
|
| 25 | 16, 24 | eqeltrrd 2307 |
. . . 4
|
| 26 | simp3 1023 |
. . . 4
| |
| 27 | restval 13273 |
. . . 4
| |
| 28 | 25, 26, 27 | syl2anc 411 |
. . 3
|
| 29 | 17, 28 | eqtrd 2262 |
. 2
|
| 30 | inex1g 4219 |
. . . 4
| |
| 31 | 30 | 3ad2ant2 1043 |
. . 3
|
| 32 | restval 13273 |
. . 3
| |
| 33 | 19, 31, 32 | syl2anc 411 |
. 2
|
| 34 | 14, 29, 33 | 3eqtr4a 2288 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-rest 13269 |
| This theorem is referenced by: restabs 14843 restin 14844 |
| Copyright terms: Public domain | W3C validator |