Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restco | Unicode version |
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
restco | ↾t ↾t ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 | |
2 | 1 | inex1 4116 | . . . 4 |
3 | ineq1 3316 | . . . . 5 | |
4 | inass 3332 | . . . . 5 | |
5 | 3, 4 | eqtrdi 2215 | . . . 4 |
6 | 2, 5 | abrexco 5727 | . . 3 |
7 | eqid 2165 | . . . . . 6 | |
8 | 7 | rnmpt 4852 | . . . . 5 |
9 | mpteq1 4066 | . . . . 5 | |
10 | 8, 9 | ax-mp 5 | . . . 4 |
11 | 10 | rnmpt 4852 | . . 3 |
12 | eqid 2165 | . . . 4 | |
13 | 12 | rnmpt 4852 | . . 3 |
14 | 6, 11, 13 | 3eqtr4i 2196 | . 2 |
15 | restval 12562 | . . . . 5 ↾t | |
16 | 15 | 3adant3 1007 | . . . 4 ↾t |
17 | 16 | oveq1d 5857 | . . 3 ↾t ↾t ↾t |
18 | restfn 12560 | . . . . . 6 ↾t | |
19 | simp1 987 | . . . . . . 7 | |
20 | 19 | elexd 2739 | . . . . . 6 |
21 | simp2 988 | . . . . . . 7 | |
22 | 21 | elexd 2739 | . . . . . 6 |
23 | fnovex 5875 | . . . . . 6 ↾t ↾t | |
24 | 18, 20, 22, 23 | mp3an2i 1332 | . . . . 5 ↾t |
25 | 16, 24 | eqeltrrd 2244 | . . . 4 |
26 | simp3 989 | . . . 4 | |
27 | restval 12562 | . . . 4 ↾t | |
28 | 25, 26, 27 | syl2anc 409 | . . 3 ↾t |
29 | 17, 28 | eqtrd 2198 | . 2 ↾t ↾t |
30 | inex1g 4118 | . . . 4 | |
31 | 30 | 3ad2ant2 1009 | . . 3 |
32 | restval 12562 | . . 3 ↾t | |
33 | 19, 31, 32 | syl2anc 409 | . 2 ↾t |
34 | 14, 29, 33 | 3eqtr4a 2225 | 1 ↾t ↾t ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 wceq 1343 wcel 2136 cab 2151 wrex 2445 cvv 2726 cin 3115 cmpt 4043 cxp 4602 crn 4605 wfn 5183 (class class class)co 5842 ↾t crest 12556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-rest 12558 |
This theorem is referenced by: restabs 12815 restin 12816 |
Copyright terms: Public domain | W3C validator |