ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaiun Unicode version

Theorem imaiun 5553
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun  |-  ( A
" U_ x  e.  B  C )  =  U_ x  e.  B  ( A " C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem imaiun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2643 . . . 4  |-  ( E. x  e.  B  E. z ( z  e.  C  /\  <. z ,  y >.  e.  A
)  <->  E. z E. x  e.  B  ( z  e.  C  /\  <. z ,  y >.  e.  A
) )
2 vex 2623 . . . . . 6  |-  y  e. 
_V
32elima3 4794 . . . . 5  |-  ( y  e.  ( A " C )  <->  E. z
( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
43rexbii 2386 . . . 4  |-  ( E. x  e.  B  y  e.  ( A " C )  <->  E. x  e.  B  E. z
( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
5 eliun 3740 . . . . . . 7  |-  ( z  e.  U_ x  e.  B  C  <->  E. x  e.  B  z  e.  C )
65anbi1i 447 . . . . . 6  |-  ( ( z  e.  U_ x  e.  B  C  /\  <.
z ,  y >.  e.  A )  <->  ( E. x  e.  B  z  e.  C  /\  <. z ,  y >.  e.  A
) )
7 r19.41v 2524 . . . . . 6  |-  ( E. x  e.  B  ( z  e.  C  /\  <.
z ,  y >.  e.  A )  <->  ( E. x  e.  B  z  e.  C  /\  <. z ,  y >.  e.  A
) )
86, 7bitr4i 186 . . . . 5  |-  ( ( z  e.  U_ x  e.  B  C  /\  <.
z ,  y >.  e.  A )  <->  E. x  e.  B  ( z  e.  C  /\  <. z ,  y >.  e.  A
) )
98exbii 1542 . . . 4  |-  ( E. z ( z  e. 
U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A )  <->  E. z E. x  e.  B  ( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
101, 4, 93bitr4ri 212 . . 3  |-  ( E. z ( z  e. 
U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A )  <->  E. x  e.  B  y  e.  ( A " C ) )
112elima3 4794 . . 3  |-  ( y  e.  ( A " U_ x  e.  B  C )  <->  E. z
( z  e.  U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A ) )
12 eliun 3740 . . 3  |-  ( y  e.  U_ x  e.  B  ( A " C )  <->  E. x  e.  B  y  e.  ( A " C ) )
1310, 11, 123bitr4i 211 . 2  |-  ( y  e.  ( A " U_ x  e.  B  C )  <->  y  e.  U_ x  e.  B  ( A " C ) )
1413eqriv 2086 1  |-  ( A
" U_ x  e.  B  C )  =  U_ x  e.  B  ( A " C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1290   E.wex 1427    e. wcel 1439   E.wrex 2361   <.cop 3453   U_ciun 3736   "cima 4455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-iun 3738  df-br 3852  df-opab 3906  df-xp 4458  df-cnv 4460  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465
This theorem is referenced by:  imauni  5554  uniqs  6364
  Copyright terms: Public domain W3C validator