ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaiun Unicode version

Theorem imaiun 5761
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun  |-  ( A
" U_ x  e.  B  C )  =  U_ x  e.  B  ( A " C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem imaiun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2761 . . . 4  |-  ( E. x  e.  B  E. z ( z  e.  C  /\  <. z ,  y >.  e.  A
)  <->  E. z E. x  e.  B  ( z  e.  C  /\  <. z ,  y >.  e.  A
) )
2 vex 2741 . . . . . 6  |-  y  e. 
_V
32elima3 4978 . . . . 5  |-  ( y  e.  ( A " C )  <->  E. z
( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
43rexbii 2484 . . . 4  |-  ( E. x  e.  B  y  e.  ( A " C )  <->  E. x  e.  B  E. z
( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
5 eliun 3891 . . . . . . 7  |-  ( z  e.  U_ x  e.  B  C  <->  E. x  e.  B  z  e.  C )
65anbi1i 458 . . . . . 6  |-  ( ( z  e.  U_ x  e.  B  C  /\  <.
z ,  y >.  e.  A )  <->  ( E. x  e.  B  z  e.  C  /\  <. z ,  y >.  e.  A
) )
7 r19.41v 2633 . . . . . 6  |-  ( E. x  e.  B  ( z  e.  C  /\  <.
z ,  y >.  e.  A )  <->  ( E. x  e.  B  z  e.  C  /\  <. z ,  y >.  e.  A
) )
86, 7bitr4i 187 . . . . 5  |-  ( ( z  e.  U_ x  e.  B  C  /\  <.
z ,  y >.  e.  A )  <->  E. x  e.  B  ( z  e.  C  /\  <. z ,  y >.  e.  A
) )
98exbii 1605 . . . 4  |-  ( E. z ( z  e. 
U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A )  <->  E. z E. x  e.  B  ( z  e.  C  /\  <. z ,  y
>.  e.  A ) )
101, 4, 93bitr4ri 213 . . 3  |-  ( E. z ( z  e. 
U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A )  <->  E. x  e.  B  y  e.  ( A " C ) )
112elima3 4978 . . 3  |-  ( y  e.  ( A " U_ x  e.  B  C )  <->  E. z
( z  e.  U_ x  e.  B  C  /\  <. z ,  y
>.  e.  A ) )
12 eliun 3891 . . 3  |-  ( y  e.  U_ x  e.  B  ( A " C )  <->  E. x  e.  B  y  e.  ( A " C ) )
1310, 11, 123bitr4i 212 . 2  |-  ( y  e.  ( A " U_ x  e.  B  C )  <->  y  e.  U_ x  e.  B  ( A " C ) )
1413eqriv 2174 1  |-  ( A
" U_ x  e.  B  C )  =  U_ x  e.  B  ( A " C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   <.cop 3596   U_ciun 3887   "cima 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-iun 3889  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640
This theorem is referenced by:  imauni  5762  uniqs  6593
  Copyright terms: Public domain W3C validator