ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabrexg Unicode version

Theorem elabrexg 5805
Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elabrexg  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hints:    B( x)    V( x, y)

Proof of Theorem elabrexg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tru 1368 . . . . 5  |- T.
2 csbeq1a 3093 . . . . . . . 8  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
32equcoms 1722 . . . . . . 7  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
4 trud 1380 . . . . . . 7  |-  ( z  =  x  -> T.  )
53, 42thd 175 . . . . . 6  |-  ( z  =  x  ->  ( B  =  [_ z  /  x ]_ B  <-> T.  )
)
65rspcev 2868 . . . . 5  |-  ( ( x  e.  A  /\ T.  )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
71, 6mpan2 425 . . . 4  |-  ( x  e.  A  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
87adantr 276 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
9 eqeq1 2203 . . . . . 6  |-  ( y  =  B  ->  (
y  =  [_ z  /  x ]_ B  <->  B  =  [_ z  /  x ]_ B ) )
109rexbidv 2498 . . . . 5  |-  ( y  =  B  ->  ( E. z  e.  A  y  =  [_ z  /  x ]_ B  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
1110elabg 2910 . . . 4  |-  ( B  e.  V  ->  ( B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
1211adantl 277 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( B  e.  {
y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
138, 12mpbird 167 . 2  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B } )
14 nfv 1542 . . . 4  |-  F/ z  y  =  B
15 nfcsb1v 3117 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
1615nfeq2 2351 . . . 4  |-  F/ x  y  =  [_ z  /  x ]_ B
172eqeq2d 2208 . . . 4  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  [_ z  /  x ]_ B ) )
1814, 16, 17cbvrexw 2724 . . 3  |-  ( E. x  e.  A  y  =  B  <->  E. z  e.  A  y  =  [_ z  /  x ]_ B )
1918abbii 2312 . 2  |-  { y  |  E. x  e.  A  y  =  B }  =  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }
2013, 19eleqtrrdi 2290 1  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2167   {cab 2182   E.wrex 2476   [_csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  lss1d  13939
  Copyright terms: Public domain W3C validator