| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabrexg | Unicode version | ||
| Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elabrexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1377 |
. . . . 5
| |
| 2 | csbeq1a 3106 |
. . . . . . . 8
| |
| 3 | 2 | equcoms 1732 |
. . . . . . 7
|
| 4 | trud 1389 |
. . . . . . 7
| |
| 5 | 3, 4 | 2thd 175 |
. . . . . 6
|
| 6 | 5 | rspcev 2881 |
. . . . 5
|
| 7 | 1, 6 | mpan2 425 |
. . . 4
|
| 8 | 7 | adantr 276 |
. . 3
|
| 9 | eqeq1 2213 |
. . . . . 6
| |
| 10 | 9 | rexbidv 2508 |
. . . . 5
|
| 11 | 10 | elabg 2923 |
. . . 4
|
| 12 | 11 | adantl 277 |
. . 3
|
| 13 | 8, 12 | mpbird 167 |
. 2
|
| 14 | nfv 1552 |
. . . 4
| |
| 15 | nfcsb1v 3130 |
. . . . 5
| |
| 16 | 15 | nfeq2 2361 |
. . . 4
|
| 17 | 2 | eqeq2d 2218 |
. . . 4
|
| 18 | 14, 16, 17 | cbvrexw 2734 |
. . 3
|
| 19 | 18 | abbii 2322 |
. 2
|
| 20 | 13, 19 | eleqtrrdi 2300 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3003 df-csb 3098 |
| This theorem is referenced by: lss1d 14220 |
| Copyright terms: Public domain | W3C validator |