| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabrexg | Unicode version | ||
| Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elabrexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1368 |
. . . . 5
| |
| 2 | csbeq1a 3093 |
. . . . . . . 8
| |
| 3 | 2 | equcoms 1722 |
. . . . . . 7
|
| 4 | trud 1380 |
. . . . . . 7
| |
| 5 | 3, 4 | 2thd 175 |
. . . . . 6
|
| 6 | 5 | rspcev 2868 |
. . . . 5
|
| 7 | 1, 6 | mpan2 425 |
. . . 4
|
| 8 | 7 | adantr 276 |
. . 3
|
| 9 | eqeq1 2203 |
. . . . . 6
| |
| 10 | 9 | rexbidv 2498 |
. . . . 5
|
| 11 | 10 | elabg 2910 |
. . . 4
|
| 12 | 11 | adantl 277 |
. . 3
|
| 13 | 8, 12 | mpbird 167 |
. 2
|
| 14 | nfv 1542 |
. . . 4
| |
| 15 | nfcsb1v 3117 |
. . . . 5
| |
| 16 | 15 | nfeq2 2351 |
. . . 4
|
| 17 | 2 | eqeq2d 2208 |
. . . 4
|
| 18 | 14, 16, 17 | cbvrexw 2724 |
. . 3
|
| 19 | 18 | abbii 2312 |
. 2
|
| 20 | 13, 19 | eleqtrrdi 2290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: lss1d 13939 |
| Copyright terms: Public domain | W3C validator |