ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabrexg Unicode version

Theorem elabrexg 5881
Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elabrexg  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hints:    B( x)    V( x, y)

Proof of Theorem elabrexg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tru 1399 . . . . 5  |- T.
2 csbeq1a 3133 . . . . . . . 8  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
32equcoms 1754 . . . . . . 7  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
4 trud 1411 . . . . . . 7  |-  ( z  =  x  -> T.  )
53, 42thd 175 . . . . . 6  |-  ( z  =  x  ->  ( B  =  [_ z  /  x ]_ B  <-> T.  )
)
65rspcev 2907 . . . . 5  |-  ( ( x  e.  A  /\ T.  )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
71, 6mpan2 425 . . . 4  |-  ( x  e.  A  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
87adantr 276 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
9 eqeq1 2236 . . . . . 6  |-  ( y  =  B  ->  (
y  =  [_ z  /  x ]_ B  <->  B  =  [_ z  /  x ]_ B ) )
109rexbidv 2531 . . . . 5  |-  ( y  =  B  ->  ( E. z  e.  A  y  =  [_ z  /  x ]_ B  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
1110elabg 2949 . . . 4  |-  ( B  e.  V  ->  ( B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
1211adantl 277 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( B  e.  {
y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
138, 12mpbird 167 . 2  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B } )
14 nfv 1574 . . . 4  |-  F/ z  y  =  B
15 nfcsb1v 3157 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
1615nfeq2 2384 . . . 4  |-  F/ x  y  =  [_ z  /  x ]_ B
172eqeq2d 2241 . . . 4  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  [_ z  /  x ]_ B ) )
1814, 16, 17cbvrexw 2759 . . 3  |-  ( E. x  e.  A  y  =  B  <->  E. z  e.  A  y  =  [_ z  /  x ]_ B )
1918abbii 2345 . 2  |-  { y  |  E. x  e.  A  y  =  B }  =  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }
2013, 19eleqtrrdi 2323 1  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   T. wtru 1396    e. wcel 2200   {cab 2215   E.wrex 2509   [_csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125
This theorem is referenced by:  lss1d  14341
  Copyright terms: Public domain W3C validator