ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add32i Unicode version

Theorem add32i 8235
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
Hypotheses
Ref Expression
add.1  |-  A  e.  CC
add.2  |-  B  e.  CC
add.3  |-  C  e.  CC
Assertion
Ref Expression
add32i  |-  ( ( A  +  B )  +  C )  =  ( ( A  +  C )  +  B
)

Proof of Theorem add32i
StepHypRef Expression
1 add.1 . 2  |-  A  e.  CC
2 add.2 . 2  |-  B  e.  CC
3 add.3 . 2  |-  C  e.  CC
4 add32 8230 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )
51, 2, 3, 4mp3an 1349 1  |-  ( ( A  +  B )  +  C )  =  ( ( A  +  C )  +  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175  (class class class)co 5943   CCcc 7922    + caddc 7927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-addcom 8024  ax-addass 8026
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by:  karatsuba  12695  lgsdir2lem2  15448
  Copyright terms: Public domain W3C validator