ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add32 Unicode version

Theorem add32 7639
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
Assertion
Ref Expression
add32  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )

Proof of Theorem add32
StepHypRef Expression
1 addcom 7617 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  =  ( C  +  B ) )
21oveq2d 5668 . . 3  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( A  +  ( C  +  B ) ) )
323adant1 961 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( A  +  ( C  +  B ) ) )
4 addass 7470 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
5 addass 7470 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  +  C
)  +  B )  =  ( A  +  ( C  +  B
) ) )
653com23 1149 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  +  B )  =  ( A  +  ( C  +  B
) ) )
73, 4, 63eqtr4d 2130 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924    = wceq 1289    e. wcel 1438  (class class class)co 5652   CCcc 7346    + caddc 7351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-addcom 7443  ax-addass 7445
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-un 3003  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-iota 4980  df-fv 5023  df-ov 5655
This theorem is referenced by:  add32r  7640  add32i  7644  add32d  7648  cnegexlem2  7656  cnegexlem3  7657  2addsub  7694  iseqshft2  9894  opeo  11171
  Copyright terms: Public domain W3C validator