ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add32 Unicode version

Theorem add32 8202
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
Assertion
Ref Expression
add32  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )

Proof of Theorem add32
StepHypRef Expression
1 addcom 8180 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  =  ( C  +  B ) )
21oveq2d 5941 . . 3  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( A  +  ( C  +  B ) ) )
323adant1 1017 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( A  +  ( C  +  B ) ) )
4 addass 8026 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
5 addass 8026 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  +  C
)  +  B )  =  ( A  +  ( C  +  B
) ) )
653com23 1211 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  +  B )  =  ( A  +  ( C  +  B
) ) )
73, 4, 63eqtr4d 2239 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894    + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-addcom 7996  ax-addass 7998
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  add32r  8203  add32i  8207  add32d  8211  cnegexlem2  8219  cnegexlem3  8220  2addsub  8257  seqshft2g  10591  opeo  12079
  Copyright terms: Public domain W3C validator