Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add32 | Unicode version |
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.) |
Ref | Expression |
---|---|
add32 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcom 8068 | . . . 4 | |
2 | 1 | oveq2d 5881 | . . 3 |
3 | 2 | 3adant1 1015 | . 2 |
4 | addass 7916 | . 2 | |
5 | addass 7916 | . . 3 | |
6 | 5 | 3com23 1209 | . 2 |
7 | 3, 4, 6 | 3eqtr4d 2218 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 (class class class)co 5865 cc 7784 caddc 7789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-addcom 7886 ax-addass 7888 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: add32r 8091 add32i 8095 add32d 8099 cnegexlem2 8107 cnegexlem3 8108 2addsub 8145 opeo 11867 |
Copyright terms: Public domain | W3C validator |