Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add32 | Unicode version |
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.) |
Ref | Expression |
---|---|
add32 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcom 8043 | . . . 4 | |
2 | 1 | oveq2d 5866 | . . 3 |
3 | 2 | 3adant1 1010 | . 2 |
4 | addass 7891 | . 2 | |
5 | addass 7891 | . . 3 | |
6 | 5 | 3com23 1204 | . 2 |
7 | 3, 4, 6 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 (class class class)co 5850 cc 7759 caddc 7764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-addcom 7861 ax-addass 7863 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5853 |
This theorem is referenced by: add32r 8066 add32i 8070 add32d 8074 cnegexlem2 8082 cnegexlem3 8083 2addsub 8120 opeo 11843 |
Copyright terms: Public domain | W3C validator |