ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add32 Unicode version

Theorem add32 8090
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
Assertion
Ref Expression
add32  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )

Proof of Theorem add32
StepHypRef Expression
1 addcom 8068 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  =  ( C  +  B ) )
21oveq2d 5881 . . 3  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( A  +  ( C  +  B ) ) )
323adant1 1015 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( A  +  ( C  +  B ) ) )
4 addass 7916 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
5 addass 7916 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  +  C
)  +  B )  =  ( A  +  ( C  +  B
) ) )
653com23 1209 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  +  B )  =  ( A  +  ( C  +  B
) ) )
73, 4, 63eqtr4d 2218 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146  (class class class)co 5865   CCcc 7784    + caddc 7789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-addcom 7886  ax-addass 7888
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868
This theorem is referenced by:  add32r  8091  add32i  8095  add32d  8099  cnegexlem2  8107  cnegexlem3  8108  2addsub  8145  opeo  11867
  Copyright terms: Public domain W3C validator