| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > add32i | GIF version | ||
| Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| add.1 | ⊢ 𝐴 ∈ ℂ |
| add.2 | ⊢ 𝐵 ∈ ℂ |
| add.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| add32i | ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | add.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | add.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | add.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | add32 8273 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | mp3an 1352 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-addcom 8067 ax-addass 8069 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 |
| This theorem is referenced by: karatsuba 12919 lgsdir2lem2 15673 |
| Copyright terms: Public domain | W3C validator |