![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > add32i | GIF version |
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
add.1 | ⊢ 𝐴 ∈ ℂ |
add.2 | ⊢ 𝐵 ∈ ℂ |
add.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
add32i | ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | add.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | add.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | add32 8178 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) | |
5 | 1, 2, 3, 4 | mp3an 1348 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-addcom 7972 ax-addass 7974 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: lgsdir2lem2 15145 |
Copyright terms: Public domain | W3C validator |