ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inimasn Unicode version

Theorem inimasn 5038
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimasn  |-  ( C  e.  V  ->  (
( A  i^i  B
) " { C } )  =  ( ( A " { C } )  i^i  ( B " { C }
) ) )

Proof of Theorem inimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3316 . . 3  |-  ( x  e.  ( ( A
" { C }
)  i^i  ( B " { C } ) )  <->  ( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) ) )
2 elin 3316 . . . . 5  |-  ( <. C ,  x >.  e.  ( A  i^i  B
)  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) )
32a1i 9 . . . 4  |-  ( C  e.  V  ->  ( <. C ,  x >.  e.  ( A  i^i  B
)  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) ) )
4 vex 2738 . . . . 5  |-  x  e. 
_V
5 elimasng 4989 . . . . 5  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( ( A  i^i  B
) " { C } )  <->  <. C ,  x >.  e.  ( A  i^i  B ) ) )
64, 5mpan2 425 . . . 4  |-  ( C  e.  V  ->  (
x  e.  ( ( A  i^i  B )
" { C }
)  <->  <. C ,  x >.  e.  ( A  i^i  B ) ) )
7 elimasng 4989 . . . . . 6  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( A " { C } )  <->  <. C ,  x >.  e.  A ) )
84, 7mpan2 425 . . . . 5  |-  ( C  e.  V  ->  (
x  e.  ( A
" { C }
)  <->  <. C ,  x >.  e.  A ) )
9 elimasng 4989 . . . . . 6  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( B " { C } )  <->  <. C ,  x >.  e.  B ) )
104, 9mpan2 425 . . . . 5  |-  ( C  e.  V  ->  (
x  e.  ( B
" { C }
)  <->  <. C ,  x >.  e.  B ) )
118, 10anbi12d 473 . . . 4  |-  ( C  e.  V  ->  (
( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) )  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) ) )
123, 6, 113bitr4rd 221 . . 3  |-  ( C  e.  V  ->  (
( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) )  <->  x  e.  ( ( A  i^i  B ) " { C } ) ) )
131, 12bitr2id 193 . 2  |-  ( C  e.  V  ->  (
x  e.  ( ( A  i^i  B )
" { C }
)  <->  x  e.  (
( A " { C } )  i^i  ( B " { C }
) ) ) )
1413eqrdv 2173 1  |-  ( C  e.  V  ->  (
( A  i^i  B
) " { C } )  =  ( ( A " { C } )  i^i  ( B " { C }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735    i^i cin 3126   {csn 3589   <.cop 3592   "cima 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator