ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inimasn Unicode version

Theorem inimasn 5119
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimasn  |-  ( C  e.  V  ->  (
( A  i^i  B
) " { C } )  =  ( ( A " { C } )  i^i  ( B " { C }
) ) )

Proof of Theorem inimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3364 . . 3  |-  ( x  e.  ( ( A
" { C }
)  i^i  ( B " { C } ) )  <->  ( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) ) )
2 elin 3364 . . . . 5  |-  ( <. C ,  x >.  e.  ( A  i^i  B
)  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) )
32a1i 9 . . . 4  |-  ( C  e.  V  ->  ( <. C ,  x >.  e.  ( A  i^i  B
)  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) ) )
4 vex 2779 . . . . 5  |-  x  e. 
_V
5 elimasng 5069 . . . . 5  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( ( A  i^i  B
) " { C } )  <->  <. C ,  x >.  e.  ( A  i^i  B ) ) )
64, 5mpan2 425 . . . 4  |-  ( C  e.  V  ->  (
x  e.  ( ( A  i^i  B )
" { C }
)  <->  <. C ,  x >.  e.  ( A  i^i  B ) ) )
7 elimasng 5069 . . . . . 6  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( A " { C } )  <->  <. C ,  x >.  e.  A ) )
84, 7mpan2 425 . . . . 5  |-  ( C  e.  V  ->  (
x  e.  ( A
" { C }
)  <->  <. C ,  x >.  e.  A ) )
9 elimasng 5069 . . . . . 6  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( B " { C } )  <->  <. C ,  x >.  e.  B ) )
104, 9mpan2 425 . . . . 5  |-  ( C  e.  V  ->  (
x  e.  ( B
" { C }
)  <->  <. C ,  x >.  e.  B ) )
118, 10anbi12d 473 . . . 4  |-  ( C  e.  V  ->  (
( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) )  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) ) )
123, 6, 113bitr4rd 221 . . 3  |-  ( C  e.  V  ->  (
( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) )  <->  x  e.  ( ( A  i^i  B ) " { C } ) ) )
131, 12bitr2id 193 . 2  |-  ( C  e.  V  ->  (
x  e.  ( ( A  i^i  B )
" { C }
)  <->  x  e.  (
( A " { C } )  i^i  ( B " { C }
) ) ) )
1413eqrdv 2205 1  |-  ( C  e.  V  ->  (
( A  i^i  B
) " { C } )  =  ( ( A " { C } )  i^i  ( B " { C }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173   {csn 3643   <.cop 3646   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator