ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inimasn Unicode version

Theorem inimasn 5028
Description: The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimasn  |-  ( C  e.  V  ->  (
( A  i^i  B
) " { C } )  =  ( ( A " { C } )  i^i  ( B " { C }
) ) )

Proof of Theorem inimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3310 . . 3  |-  ( x  e.  ( ( A
" { C }
)  i^i  ( B " { C } ) )  <->  ( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) ) )
2 elin 3310 . . . . 5  |-  ( <. C ,  x >.  e.  ( A  i^i  B
)  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) )
32a1i 9 . . . 4  |-  ( C  e.  V  ->  ( <. C ,  x >.  e.  ( A  i^i  B
)  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) ) )
4 vex 2733 . . . . 5  |-  x  e. 
_V
5 elimasng 4979 . . . . 5  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( ( A  i^i  B
) " { C } )  <->  <. C ,  x >.  e.  ( A  i^i  B ) ) )
64, 5mpan2 423 . . . 4  |-  ( C  e.  V  ->  (
x  e.  ( ( A  i^i  B )
" { C }
)  <->  <. C ,  x >.  e.  ( A  i^i  B ) ) )
7 elimasng 4979 . . . . . 6  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( A " { C } )  <->  <. C ,  x >.  e.  A ) )
84, 7mpan2 423 . . . . 5  |-  ( C  e.  V  ->  (
x  e.  ( A
" { C }
)  <->  <. C ,  x >.  e.  A ) )
9 elimasng 4979 . . . . . 6  |-  ( ( C  e.  V  /\  x  e.  _V )  ->  ( x  e.  ( B " { C } )  <->  <. C ,  x >.  e.  B ) )
104, 9mpan2 423 . . . . 5  |-  ( C  e.  V  ->  (
x  e.  ( B
" { C }
)  <->  <. C ,  x >.  e.  B ) )
118, 10anbi12d 470 . . . 4  |-  ( C  e.  V  ->  (
( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) )  <->  ( <. C ,  x >.  e.  A  /\  <. C ,  x >.  e.  B ) ) )
123, 6, 113bitr4rd 220 . . 3  |-  ( C  e.  V  ->  (
( x  e.  ( A " { C } )  /\  x  e.  ( B " { C } ) )  <->  x  e.  ( ( A  i^i  B ) " { C } ) ) )
131, 12bitr2id 192 . 2  |-  ( C  e.  V  ->  (
x  e.  ( ( A  i^i  B )
" { C }
)  <->  x  e.  (
( A " { C } )  i^i  ( B " { C }
) ) ) )
1413eqrdv 2168 1  |-  ( C  e.  V  ->  (
( A  i^i  B
) " { C } )  =  ( ( A " { C } )  i^i  ( B " { C }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730    i^i cin 3120   {csn 3583   <.cop 3586   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator