ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idpru Unicode version

Theorem 1idpru 7367
Description: Lemma for 1idpr 7368. (Contributed by Jim Kingdon, 13-Dec-2019.)
Assertion
Ref Expression
1idpru  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  1P ) )  =  ( 2nd `  A ) )

Proof of Theorem 1idpru
Dummy variables  x  y  z  w  v  u  f  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3087 . . . . . 6  |-  ( 2nd `  1P )  C_  ( 2nd `  1P )
2 rexss 3134 . . . . . 6  |-  ( ( 2nd `  1P ) 
C_  ( 2nd `  1P )  ->  ( E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h )  <->  E. h  e.  ( 2nd `  1P ) ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) ) ) )
31, 2ax-mp 5 . . . . 5  |-  ( E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
)  <->  E. h  e.  ( 2nd `  1P ) ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) ) )
4 r19.42v 2565 . . . . . 6  |-  ( E. h  e.  ( 2nd `  1P ) ( f 
<Q  x  /\  x  =  ( f  .Q  h ) )  <->  ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) )
5 1pr 7330 . . . . . . . . . . 11  |-  1P  e.  P.
6 prop 7251 . . . . . . . . . . . 12  |-  ( 1P  e.  P.  ->  <. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P. )
7 elprnqu 7258 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P.  /\  h  e.  ( 2nd `  1P ) )  ->  h  e.  Q. )
86, 7sylan 281 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  h  e.  ( 2nd `  1P ) )  ->  h  e.  Q. )
95, 8mpan 420 . . . . . . . . . 10  |-  ( h  e.  ( 2nd `  1P )  ->  h  e.  Q. )
10 prop 7251 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
11 elprnqu 7258 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
f  e.  Q. )
1210, 11sylan 281 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
f  e.  Q. )
13 breq2 3903 . . . . . . . . . . . . 13  |-  ( x  =  ( f  .Q  h )  ->  (
f  <Q  x  <->  f  <Q  ( f  .Q  h ) ) )
14133ad2ant3 989 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  h  e.  Q.  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  x  <->  f 
<Q  ( f  .Q  h
) ) )
15 1pru 7332 . . . . . . . . . . . . . . 15  |-  ( 2nd `  1P )  =  {
h  |  1Q  <Q  h }
1615abeq2i 2228 . . . . . . . . . . . . . 14  |-  ( h  e.  ( 2nd `  1P ) 
<->  1Q  <Q  h )
17 1nq 7142 . . . . . . . . . . . . . . . . 17  |-  1Q  e.  Q.
18 ltmnqg 7177 . . . . . . . . . . . . . . . . 17  |-  ( ( 1Q  e.  Q.  /\  h  e.  Q.  /\  f  e.  Q. )  ->  ( 1Q  <Q  h  <->  ( f  .Q  1Q )  <Q  (
f  .Q  h ) ) )
1917, 18mp3an1 1287 . . . . . . . . . . . . . . . 16  |-  ( ( h  e.  Q.  /\  f  e.  Q. )  ->  ( 1Q  <Q  h  <->  ( f  .Q  1Q ) 
<Q  ( f  .Q  h
) ) )
2019ancoms 266 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  h  e.  Q. )  ->  ( 1Q  <Q  h  <->  ( f  .Q  1Q ) 
<Q  ( f  .Q  h
) ) )
21 mulidnq 7165 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  Q.  ->  (
f  .Q  1Q )  =  f )
2221breq1d 3909 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
( f  .Q  1Q )  <Q  ( f  .Q  h )  <->  f  <Q  ( f  .Q  h ) ) )
2322adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  h  e.  Q. )  ->  ( ( f  .Q  1Q )  <Q  (
f  .Q  h )  <-> 
f  <Q  ( f  .Q  h ) ) )
2420, 23bitrd 187 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  h  e.  Q. )  ->  ( 1Q  <Q  h  <->  f 
<Q  ( f  .Q  h
) ) )
2516, 24syl5rbb 192 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  h  e.  Q. )  ->  ( f  <Q  (
f  .Q  h )  <-> 
h  e.  ( 2nd `  1P ) ) )
26253adant3 986 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  h  e.  Q.  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  (
f  .Q  h )  <-> 
h  e.  ( 2nd `  1P ) ) )
2714, 26bitrd 187 . . . . . . . . . . 11  |-  ( ( f  e.  Q.  /\  h  e.  Q.  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  x  <->  h  e.  ( 2nd `  1P ) ) )
2812, 27syl3an1 1234 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  /\  h  e.  Q.  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  x  <->  h  e.  ( 2nd `  1P ) ) )
299, 28syl3an2 1235 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  /\  h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  x  <->  h  e.  ( 2nd `  1P ) ) )
30293expia 1168 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  /\  h  e.  ( 2nd `  1P ) )  -> 
( x  =  ( f  .Q  h )  ->  ( f  <Q  x 
<->  h  e.  ( 2nd `  1P ) ) ) )
3130pm5.32rd 446 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  /\  h  e.  ( 2nd `  1P ) )  -> 
( ( f  <Q  x  /\  x  =  ( f  .Q  h ) )  <->  ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) ) ) )
3231rexbidva 2411 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( E. h  e.  ( 2nd `  1P ) ( f  <Q  x  /\  x  =  ( f  .Q  h ) )  <->  E. h  e.  ( 2nd `  1P ) ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) ) ) )
334, 32syl5rbbr 194 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( E. h  e.  ( 2nd `  1P ) ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) )  <->  ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) ) )
343, 33syl5bb 191 . . . 4  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h )  <-> 
( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h ) ) ) )
3534rexbidva 2411 . . 3  |-  ( A  e.  P.  ->  ( E. f  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
)  <->  E. f  e.  ( 2nd `  A ) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h ) ) ) )
36 df-imp 7245 . . . . 5  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 1st `  y )  /\  v  e.  ( 1st `  z
)  /\  w  =  ( u  .Q  v
) ) } ,  { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 2nd `  y )  /\  v  e.  ( 2nd `  z
)  /\  w  =  ( u  .Q  v
) ) } >. )
37 mulclnq 7152 . . . . 5  |-  ( ( u  e.  Q.  /\  v  e.  Q. )  ->  ( u  .Q  v
)  e.  Q. )
3836, 37genpelvu 7289 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( x  e.  ( 2nd `  ( A  .P.  1P ) )  <->  E. f  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
) ) )
395, 38mpan2 421 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 2nd `  ( A  .P.  1P ) )  <->  E. f  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) )
40 prnminu 7265 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  E. f  e.  ( 2nd `  A ) f 
<Q  x )
4110, 40sylan 281 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  E. f  e.  ( 2nd `  A ) f 
<Q  x )
42 ltrelnq 7141 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
4342brel 4561 . . . . . . . . . . . . 13  |-  ( f 
<Q  x  ->  ( f  e.  Q.  /\  x  e.  Q. ) )
4443ancomd 265 . . . . . . . . . . . 12  |-  ( f 
<Q  x  ->  ( x  e.  Q.  /\  f  e.  Q. ) )
45 ltmnqg 7177 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
4645adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
47 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  f  e.  Q. )
48 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  e.  Q. )
49 recclnq 7168 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  ( *Q `  f )  e. 
Q. )
5049adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( *Q `  f
)  e.  Q. )
51 mulcomnqg 7159 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
5251adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
5346, 47, 48, 50, 52caovord2d 5908 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  <Q  x  <->  ( f  .Q  ( *Q
`  f ) ) 
<Q  ( x  .Q  ( *Q `  f ) ) ) )
54 recidnq 7169 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
f  .Q  ( *Q
`  f ) )  =  1Q )
5554breq1d 3909 . . . . . . . . . . . . . . 15  |-  ( f  e.  Q.  ->  (
( f  .Q  ( *Q `  f ) ) 
<Q  ( x  .Q  ( *Q `  f ) )  <-> 
1Q  <Q  ( x  .Q  ( *Q `  f ) ) ) )
5655adantl 275 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( ( f  .Q  ( *Q `  f
) )  <Q  (
x  .Q  ( *Q
`  f ) )  <-> 
1Q  <Q  ( x  .Q  ( *Q `  f ) ) ) )
5753, 56bitrd 187 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  <Q  x  <->  1Q 
<Q  ( x  .Q  ( *Q `  f ) ) ) )
5857biimpd 143 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  <Q  x  ->  1Q  <Q  ( x  .Q  ( *Q `  f
) ) ) )
5944, 58mpcom 36 . . . . . . . . . . 11  |-  ( f 
<Q  x  ->  1Q  <Q  ( x  .Q  ( *Q
`  f ) ) )
60 mulclnq 7152 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  ( *Q `  f )  e.  Q. )  -> 
( x  .Q  ( *Q `  f ) )  e.  Q. )
6149, 60sylan2 284 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  ( *Q `  f ) )  e.  Q. )
62 breq2 3903 . . . . . . . . . . . . 13  |-  ( h  =  ( x  .Q  ( *Q `  f ) )  ->  ( 1Q  <Q  h  <->  1Q  <Q  ( x  .Q  ( *Q `  f ) ) ) )
6362, 15elab2g 2804 . . . . . . . . . . . 12  |-  ( ( x  .Q  ( *Q
`  f ) )  e.  Q.  ->  (
( x  .Q  ( *Q `  f ) )  e.  ( 2nd `  1P ) 
<->  1Q  <Q  ( x  .Q  ( *Q `  f
) ) ) )
6444, 61, 633syl 17 . . . . . . . . . . 11  |-  ( f 
<Q  x  ->  ( ( x  .Q  ( *Q
`  f ) )  e.  ( 2nd `  1P ) 
<->  1Q  <Q  ( x  .Q  ( *Q `  f
) ) ) )
6559, 64mpbird 166 . . . . . . . . . 10  |-  ( f 
<Q  x  ->  ( x  .Q  ( *Q `  f ) )  e.  ( 2nd `  1P ) )
66 mulassnqg 7160 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
( y  .Q  z
)  .Q  w )  =  ( y  .Q  ( z  .Q  w
) ) )
6766adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( (
y  .Q  z )  .Q  w )  =  ( y  .Q  (
z  .Q  w ) ) )
6847, 48, 50, 52, 67caov12d 5920 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  ( f  .Q  ( *Q `  f
) ) ) )
6954oveq2d 5758 . . . . . . . . . . . . 13  |-  ( f  e.  Q.  ->  (
x  .Q  ( f  .Q  ( *Q `  f ) ) )  =  ( x  .Q  1Q ) )
7069adantl 275 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  (
f  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  1Q ) )
71 mulidnq 7165 . . . . . . . . . . . . 13  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
7271adantr 274 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  1Q )  =  x )
7368, 70, 723eqtrrd 2155 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7444, 73syl 14 . . . . . . . . . 10  |-  ( f 
<Q  x  ->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) )
75 oveq2 5750 . . . . . . . . . . . 12  |-  ( h  =  ( x  .Q  ( *Q `  f ) )  ->  ( f  .Q  h )  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7675eqeq2d 2129 . . . . . . . . . . 11  |-  ( h  =  ( x  .Q  ( *Q `  f ) )  ->  ( x  =  ( f  .Q  h )  <->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) ) )
7776rspcev 2763 . . . . . . . . . 10  |-  ( ( ( x  .Q  ( *Q `  f ) )  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )  ->  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) )
7865, 74, 77syl2anc 408 . . . . . . . . 9  |-  ( f 
<Q  x  ->  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) )
7978a1i 9 . . . . . . . 8  |-  ( f  e.  ( 2nd `  A
)  ->  ( f  <Q  x  ->  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) )
8079ancld 323 . . . . . . 7  |-  ( f  e.  ( 2nd `  A
)  ->  ( f  <Q  x  ->  ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) ) )
8180reximia 2504 . . . . . 6  |-  ( E. f  e.  ( 2nd `  A ) f  <Q  x  ->  E. f  e.  ( 2nd `  A ) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h ) ) )
8241, 81syl 14 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  E. f  e.  ( 2nd `  A ) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
) ) )
8382ex 114 . . . 4  |-  ( A  e.  P.  ->  (
x  e.  ( 2nd `  A )  ->  E. f  e.  ( 2nd `  A
) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) ) )
84 prcunqu 7261 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( f  <Q  x  ->  x  e.  ( 2nd `  A ) ) )
8510, 84sylan 281 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( f  <Q  x  ->  x  e.  ( 2nd `  A ) ) )
8685adantrd 277 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) )  ->  x  e.  ( 2nd `  A ) ) )
8786rexlimdva 2526 . . . 4  |-  ( A  e.  P.  ->  ( E. f  e.  ( 2nd `  A ) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
) )  ->  x  e.  ( 2nd `  A
) ) )
8883, 87impbid 128 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 2nd `  A )  <->  E. f  e.  ( 2nd `  A
) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) ) )
8935, 39, 883bitr4d 219 . 2  |-  ( A  e.  P.  ->  (
x  e.  ( 2nd `  ( A  .P.  1P ) )  <->  x  e.  ( 2nd `  A ) ) )
9089eqrdv 2115 1  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  1P ) )  =  ( 2nd `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   E.wrex 2394    C_ wss 3041   <.cop 3500   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   1stc1st 6004   2ndc2nd 6005   Q.cnq 7056   1Qc1q 7057    .Q cmq 7059   *Qcrq 7060    <Q cltq 7061   P.cnp 7067   1Pc1p 7068    .P. cmp 7070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-inp 7242  df-i1p 7243  df-imp 7245
This theorem is referenced by:  1idpr  7368
  Copyright terms: Public domain W3C validator