ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idpru Unicode version

Theorem 1idpru 7675
Description: Lemma for 1idpr 7676. (Contributed by Jim Kingdon, 13-Dec-2019.)
Assertion
Ref Expression
1idpru  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  1P ) )  =  ( 2nd `  A ) )

Proof of Theorem 1idpru
Dummy variables  x  y  z  w  v  u  f  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3204 . . . . . 6  |-  ( 2nd `  1P )  C_  ( 2nd `  1P )
2 rexss 3251 . . . . . 6  |-  ( ( 2nd `  1P ) 
C_  ( 2nd `  1P )  ->  ( E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h )  <->  E. h  e.  ( 2nd `  1P ) ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) ) ) )
31, 2ax-mp 5 . . . . 5  |-  ( E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
)  <->  E. h  e.  ( 2nd `  1P ) ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) ) )
4 1pr 7638 . . . . . . . . . . 11  |-  1P  e.  P.
5 prop 7559 . . . . . . . . . . . 12  |-  ( 1P  e.  P.  ->  <. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P. )
6 elprnqu 7566 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P.  /\  h  e.  ( 2nd `  1P ) )  ->  h  e.  Q. )
75, 6sylan 283 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  h  e.  ( 2nd `  1P ) )  ->  h  e.  Q. )
84, 7mpan 424 . . . . . . . . . 10  |-  ( h  e.  ( 2nd `  1P )  ->  h  e.  Q. )
9 prop 7559 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
10 elprnqu 7566 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
f  e.  Q. )
119, 10sylan 283 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
f  e.  Q. )
12 breq2 4038 . . . . . . . . . . . . 13  |-  ( x  =  ( f  .Q  h )  ->  (
f  <Q  x  <->  f  <Q  ( f  .Q  h ) ) )
13123ad2ant3 1022 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  h  e.  Q.  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  x  <->  f 
<Q  ( f  .Q  h
) ) )
14 1pru 7640 . . . . . . . . . . . . . . 15  |-  ( 2nd `  1P )  =  {
h  |  1Q  <Q  h }
1514abeq2i 2307 . . . . . . . . . . . . . 14  |-  ( h  e.  ( 2nd `  1P ) 
<->  1Q  <Q  h )
16 1nq 7450 . . . . . . . . . . . . . . . . 17  |-  1Q  e.  Q.
17 ltmnqg 7485 . . . . . . . . . . . . . . . . 17  |-  ( ( 1Q  e.  Q.  /\  h  e.  Q.  /\  f  e.  Q. )  ->  ( 1Q  <Q  h  <->  ( f  .Q  1Q )  <Q  (
f  .Q  h ) ) )
1816, 17mp3an1 1335 . . . . . . . . . . . . . . . 16  |-  ( ( h  e.  Q.  /\  f  e.  Q. )  ->  ( 1Q  <Q  h  <->  ( f  .Q  1Q ) 
<Q  ( f  .Q  h
) ) )
1918ancoms 268 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  h  e.  Q. )  ->  ( 1Q  <Q  h  <->  ( f  .Q  1Q ) 
<Q  ( f  .Q  h
) ) )
20 mulidnq 7473 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  Q.  ->  (
f  .Q  1Q )  =  f )
2120breq1d 4044 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
( f  .Q  1Q )  <Q  ( f  .Q  h )  <->  f  <Q  ( f  .Q  h ) ) )
2221adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  h  e.  Q. )  ->  ( ( f  .Q  1Q )  <Q  (
f  .Q  h )  <-> 
f  <Q  ( f  .Q  h ) ) )
2319, 22bitrd 188 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  h  e.  Q. )  ->  ( 1Q  <Q  h  <->  f 
<Q  ( f  .Q  h
) ) )
2415, 23bitr2id 193 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  h  e.  Q. )  ->  ( f  <Q  (
f  .Q  h )  <-> 
h  e.  ( 2nd `  1P ) ) )
25243adant3 1019 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  h  e.  Q.  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  (
f  .Q  h )  <-> 
h  e.  ( 2nd `  1P ) ) )
2613, 25bitrd 188 . . . . . . . . . . 11  |-  ( ( f  e.  Q.  /\  h  e.  Q.  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  x  <->  h  e.  ( 2nd `  1P ) ) )
2711, 26syl3an1 1282 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  /\  h  e.  Q.  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  x  <->  h  e.  ( 2nd `  1P ) ) )
288, 27syl3an2 1283 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  /\  h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) )  -> 
( f  <Q  x  <->  h  e.  ( 2nd `  1P ) ) )
29283expia 1207 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  /\  h  e.  ( 2nd `  1P ) )  -> 
( x  =  ( f  .Q  h )  ->  ( f  <Q  x 
<->  h  e.  ( 2nd `  1P ) ) ) )
3029pm5.32rd 451 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  /\  h  e.  ( 2nd `  1P ) )  -> 
( ( f  <Q  x  /\  x  =  ( f  .Q  h ) )  <->  ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) ) ) )
3130rexbidva 2494 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( E. h  e.  ( 2nd `  1P ) ( f  <Q  x  /\  x  =  ( f  .Q  h ) )  <->  E. h  e.  ( 2nd `  1P ) ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) ) ) )
32 r19.42v 2654 . . . . . 6  |-  ( E. h  e.  ( 2nd `  1P ) ( f 
<Q  x  /\  x  =  ( f  .Q  h ) )  <->  ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) )
3331, 32bitr3di 195 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( E. h  e.  ( 2nd `  1P ) ( h  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  h ) )  <->  ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) ) )
343, 33bitrid 192 . . . 4  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h )  <-> 
( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h ) ) ) )
3534rexbidva 2494 . . 3  |-  ( A  e.  P.  ->  ( E. f  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
)  <->  E. f  e.  ( 2nd `  A ) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h ) ) ) )
36 df-imp 7553 . . . . 5  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 1st `  y )  /\  v  e.  ( 1st `  z
)  /\  w  =  ( u  .Q  v
) ) } ,  { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 2nd `  y )  /\  v  e.  ( 2nd `  z
)  /\  w  =  ( u  .Q  v
) ) } >. )
37 mulclnq 7460 . . . . 5  |-  ( ( u  e.  Q.  /\  v  e.  Q. )  ->  ( u  .Q  v
)  e.  Q. )
3836, 37genpelvu 7597 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( x  e.  ( 2nd `  ( A  .P.  1P ) )  <->  E. f  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
) ) )
394, 38mpan2 425 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 2nd `  ( A  .P.  1P ) )  <->  E. f  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) )
40 prnminu 7573 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  E. f  e.  ( 2nd `  A ) f 
<Q  x )
419, 40sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  E. f  e.  ( 2nd `  A ) f 
<Q  x )
42 ltrelnq 7449 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
4342brel 4716 . . . . . . . . . . . . 13  |-  ( f 
<Q  x  ->  ( f  e.  Q.  /\  x  e.  Q. ) )
4443ancomd 267 . . . . . . . . . . . 12  |-  ( f 
<Q  x  ->  ( x  e.  Q.  /\  f  e.  Q. ) )
45 ltmnqg 7485 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
4645adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
47 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  f  e.  Q. )
48 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  e.  Q. )
49 recclnq 7476 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  ( *Q `  f )  e. 
Q. )
5049adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( *Q `  f
)  e.  Q. )
51 mulcomnqg 7467 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
5251adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
5346, 47, 48, 50, 52caovord2d 6097 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  <Q  x  <->  ( f  .Q  ( *Q
`  f ) ) 
<Q  ( x  .Q  ( *Q `  f ) ) ) )
54 recidnq 7477 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
f  .Q  ( *Q
`  f ) )  =  1Q )
5554breq1d 4044 . . . . . . . . . . . . . . 15  |-  ( f  e.  Q.  ->  (
( f  .Q  ( *Q `  f ) ) 
<Q  ( x  .Q  ( *Q `  f ) )  <-> 
1Q  <Q  ( x  .Q  ( *Q `  f ) ) ) )
5655adantl 277 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( ( f  .Q  ( *Q `  f
) )  <Q  (
x  .Q  ( *Q
`  f ) )  <-> 
1Q  <Q  ( x  .Q  ( *Q `  f ) ) ) )
5753, 56bitrd 188 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  <Q  x  <->  1Q 
<Q  ( x  .Q  ( *Q `  f ) ) ) )
5857biimpd 144 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  <Q  x  ->  1Q  <Q  ( x  .Q  ( *Q `  f
) ) ) )
5944, 58mpcom 36 . . . . . . . . . . 11  |-  ( f 
<Q  x  ->  1Q  <Q  ( x  .Q  ( *Q
`  f ) ) )
60 mulclnq 7460 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  ( *Q `  f )  e.  Q. )  -> 
( x  .Q  ( *Q `  f ) )  e.  Q. )
6149, 60sylan2 286 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  ( *Q `  f ) )  e.  Q. )
62 breq2 4038 . . . . . . . . . . . . 13  |-  ( h  =  ( x  .Q  ( *Q `  f ) )  ->  ( 1Q  <Q  h  <->  1Q  <Q  ( x  .Q  ( *Q `  f ) ) ) )
6362, 14elab2g 2911 . . . . . . . . . . . 12  |-  ( ( x  .Q  ( *Q
`  f ) )  e.  Q.  ->  (
( x  .Q  ( *Q `  f ) )  e.  ( 2nd `  1P ) 
<->  1Q  <Q  ( x  .Q  ( *Q `  f
) ) ) )
6444, 61, 633syl 17 . . . . . . . . . . 11  |-  ( f 
<Q  x  ->  ( ( x  .Q  ( *Q
`  f ) )  e.  ( 2nd `  1P ) 
<->  1Q  <Q  ( x  .Q  ( *Q `  f
) ) ) )
6559, 64mpbird 167 . . . . . . . . . 10  |-  ( f 
<Q  x  ->  ( x  .Q  ( *Q `  f ) )  e.  ( 2nd `  1P ) )
66 mulassnqg 7468 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
( y  .Q  z
)  .Q  w )  =  ( y  .Q  ( z  .Q  w
) ) )
6766adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( (
y  .Q  z )  .Q  w )  =  ( y  .Q  (
z  .Q  w ) ) )
6847, 48, 50, 52, 67caov12d 6109 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  ( f  .Q  ( *Q `  f
) ) ) )
6954oveq2d 5941 . . . . . . . . . . . . 13  |-  ( f  e.  Q.  ->  (
x  .Q  ( f  .Q  ( *Q `  f ) ) )  =  ( x  .Q  1Q ) )
7069adantl 277 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  (
f  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  1Q ) )
71 mulidnq 7473 . . . . . . . . . . . . 13  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
7271adantr 276 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  1Q )  =  x )
7368, 70, 723eqtrrd 2234 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7444, 73syl 14 . . . . . . . . . 10  |-  ( f 
<Q  x  ->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) )
75 oveq2 5933 . . . . . . . . . . . 12  |-  ( h  =  ( x  .Q  ( *Q `  f ) )  ->  ( f  .Q  h )  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7675eqeq2d 2208 . . . . . . . . . . 11  |-  ( h  =  ( x  .Q  ( *Q `  f ) )  ->  ( x  =  ( f  .Q  h )  <->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) ) )
7776rspcev 2868 . . . . . . . . . 10  |-  ( ( ( x  .Q  ( *Q `  f ) )  e.  ( 2nd `  1P )  /\  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )  ->  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) )
7865, 74, 77syl2anc 411 . . . . . . . . 9  |-  ( f 
<Q  x  ->  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) )
7978a1i 9 . . . . . . . 8  |-  ( f  e.  ( 2nd `  A
)  ->  ( f  <Q  x  ->  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) )
8079ancld 325 . . . . . . 7  |-  ( f  e.  ( 2nd `  A
)  ->  ( f  <Q  x  ->  ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) ) )
8180reximia 2592 . . . . . 6  |-  ( E. f  e.  ( 2nd `  A ) f  <Q  x  ->  E. f  e.  ( 2nd `  A ) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h ) ) )
8241, 81syl 14 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  E. f  e.  ( 2nd `  A ) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
) ) )
8382ex 115 . . . 4  |-  ( A  e.  P.  ->  (
x  e.  ( 2nd `  A )  ->  E. f  e.  ( 2nd `  A
) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) ) )
84 prcunqu 7569 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( f  <Q  x  ->  x  e.  ( 2nd `  A ) ) )
859, 84sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( f  <Q  x  ->  x  e.  ( 2nd `  A ) ) )
8685adantrd 279 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 2nd `  A ) )  -> 
( ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) )  ->  x  e.  ( 2nd `  A ) ) )
8786rexlimdva 2614 . . . 4  |-  ( A  e.  P.  ->  ( E. f  e.  ( 2nd `  A ) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  ( f  .Q  h
) )  ->  x  e.  ( 2nd `  A
) ) )
8883, 87impbid 129 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 2nd `  A )  <->  E. f  e.  ( 2nd `  A
) ( f  <Q  x  /\  E. h  e.  ( 2nd `  1P ) x  =  (
f  .Q  h ) ) ) )
8935, 39, 883bitr4d 220 . 2  |-  ( A  e.  P.  ->  (
x  e.  ( 2nd `  ( A  .P.  1P ) )  <->  x  e.  ( 2nd `  A ) ) )
9089eqrdv 2194 1  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  1P ) )  =  ( 2nd `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   <.cop 3626   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364   1Qc1q 7365    .Q cmq 7367   *Qcrq 7368    <Q cltq 7369   P.cnp 7375   1Pc1p 7376    .P. cmp 7378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-inp 7550  df-i1p 7551  df-imp 7553
This theorem is referenced by:  1idpr  7676
  Copyright terms: Public domain W3C validator