Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpid | Unicode version |
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.) |
Ref | Expression |
---|---|
grpinveu.b | |
grpinveu.p | |
grpinveu.o |
Ref | Expression |
---|---|
grpid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2172 | . 2 | |
2 | grpinveu.b | . . . . . . 7 | |
3 | grpinveu.o | . . . . . . 7 | |
4 | 2, 3 | grpidcl 12734 | . . . . . 6 |
5 | grpinveu.p | . . . . . . . 8 | |
6 | 2, 5 | grprcan 12740 | . . . . . . 7 |
7 | 6 | 3exp2 1220 | . . . . . 6 |
8 | 4, 7 | mpid 42 | . . . . 5 |
9 | 8 | pm2.43d 50 | . . . 4 |
10 | 9 | imp 123 | . . 3 |
11 | 2, 5, 3 | grplid 12736 | . . . 4 |
12 | 11 | eqeq2d 2182 | . . 3 |
13 | 10, 12 | bitr3d 189 | . 2 |
14 | 1, 13 | bitr2id 192 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cgrp 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-grp 12711 |
This theorem is referenced by: isgrpid2 12743 grpidd2 12744 |
Copyright terms: Public domain | W3C validator |