| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpid | Unicode version | ||
| Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinveu.b |
|
| grpinveu.p |
|
| grpinveu.o |
|
| Ref | Expression |
|---|---|
| grpid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 |
. 2
| |
| 2 | grpinveu.b |
. . . . . . 7
| |
| 3 | grpinveu.o |
. . . . . . 7
| |
| 4 | 2, 3 | grpidcl 13436 |
. . . . . 6
|
| 5 | grpinveu.p |
. . . . . . . 8
| |
| 6 | 2, 5 | grprcan 13444 |
. . . . . . 7
|
| 7 | 6 | 3exp2 1228 |
. . . . . 6
|
| 8 | 4, 7 | mpid 42 |
. . . . 5
|
| 9 | 8 | pm2.43d 50 |
. . . 4
|
| 10 | 9 | imp 124 |
. . 3
|
| 11 | 2, 5, 3 | grplid 13438 |
. . . 4
|
| 12 | 11 | eqeq2d 2218 |
. . 3
|
| 13 | 10, 12 | bitr3d 190 |
. 2
|
| 14 | 1, 13 | bitr2id 193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 |
| This theorem is referenced by: isgrpid2 13447 grpidd2 13448 subg0 13591 qus0 13646 ghmid 13660 lmod0vid 14157 cnfld0 14408 psr0 14523 |
| Copyright terms: Public domain | W3C validator |