ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpid Unicode version

Theorem grpid 13567
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b  |-  B  =  ( Base `  G
)
grpinveu.p  |-  .+  =  ( +g  `  G )
grpinveu.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpid  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( X  .+  X )  =  X  <-> 
.0.  =  X ) )

Proof of Theorem grpid
StepHypRef Expression
1 eqcom 2231 . 2  |-  (  .0.  =  X  <->  X  =  .0.  )
2 grpinveu.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 grpinveu.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
42, 3grpidcl 13557 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  B )
5 grpinveu.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
62, 5grprcan 13565 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  .0.  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  X )  =  (  .0.  .+  X
)  <->  X  =  .0.  ) )
763exp2 1249 . . . . . 6  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  (  .0.  e.  B  -> 
( X  e.  B  ->  ( ( X  .+  X )  =  (  .0.  .+  X )  <->  X  =  .0.  ) ) ) ) )
84, 7mpid 42 . . . . 5  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( X  e.  B  -> 
( ( X  .+  X )  =  (  .0.  .+  X )  <->  X  =  .0.  ) ) ) )
98pm2.43d 50 . . . 4  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( ( X  .+  X
)  =  (  .0.  .+  X )  <->  X  =  .0.  ) ) )
109imp 124 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( X  .+  X )  =  (  .0.  .+  X )  <->  X  =  .0.  ) )
112, 5, 3grplid 13559 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )
1211eqeq2d 2241 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( X  .+  X )  =  (  .0.  .+  X )  <->  ( X  .+  X )  =  X ) )
1310, 12bitr3d 190 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  =  .0.  <->  ( X  .+  X )  =  X ) )
141, 13bitr2id 193 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( X  .+  X )  =  X  <-> 
.0.  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Grpcgrp 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531
This theorem is referenced by:  isgrpid2  13568  grpidd2  13569  subg0  13712  qus0  13767  ghmid  13781  lmod0vid  14278  cnfld0  14529  psr0  14644
  Copyright terms: Public domain W3C validator