ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzn Unicode version

Theorem fzn 9454
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
Assertion
Ref Expression
fzn  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )

Proof of Theorem fzn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fznlem 9453 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  ( M ... N
)  =  (/) ) )
2 neq0r 3297 . . . . . 6  |-  ( E. x  x  e.  ( M ... N )  ->  -.  ( M ... N )  =  (/) )
3 simpr 108 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  ( M ... N )  =  (/) )
42, 3nsyl3 591 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  -.  E. x  x  e.  ( M ... N ) )
5 fzm 9450 . . . . . . 7  |-  ( E. x  x  e.  ( M ... N )  <-> 
N  e.  ( ZZ>= `  M ) )
6 eluz 9030 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
75, 6syl5rbb 191 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  E. x  x  e.  ( M ... N ) ) )
87adantr 270 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  ( M  <_  N 
<->  E. x  x  e.  ( M ... N
) ) )
94, 8mtbird 633 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  -.  M  <_  N )
10 zltnle 8794 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
1110ancoms 264 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
1211adantr 270 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  ( N  < 
M  <->  -.  M  <_  N ) )
139, 12mpbird 165 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  N  <  M
)
1413ex 113 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M ... N )  =  (/)  ->  N  <  M ) )
151, 14impbid 127 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   (/)c0 3286   class class class wbr 3845   ` cfv 5015  (class class class)co 5652    < clt 7520    <_ cle 7521   ZZcz 8748   ZZ>=cuz 9017   ...cfz 9422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-uz 9018  df-fz 9423
This theorem is referenced by:  fz1n  9456  fz10  9458  fzsuc2  9489  fzm1  9510  fzon  9573  exfzdc  9647  fzfig  9833  uzsinds  9844  hashfzp1  10228  fisumrev2  10836  isumsplit  10881  arisum2  10889  cvgratnnlemseq  10916
  Copyright terms: Public domain W3C validator