ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzn Unicode version

Theorem fzn 10056
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
Assertion
Ref Expression
fzn  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )

Proof of Theorem fzn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fznlem 10055 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  ->  ( M ... N
)  =  (/) ) )
2 neq0r 3449 . . . . . 6  |-  ( E. x  x  e.  ( M ... N )  ->  -.  ( M ... N )  =  (/) )
3 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  ( M ... N )  =  (/) )
42, 3nsyl3 627 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  -.  E. x  x  e.  ( M ... N ) )
5 fzm 10052 . . . . . . 7  |-  ( E. x  x  e.  ( M ... N )  <-> 
N  e.  ( ZZ>= `  M ) )
6 eluz 9555 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
75, 6bitr2id 193 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  E. x  x  e.  ( M ... N ) ) )
87adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  ( M  <_  N 
<->  E. x  x  e.  ( M ... N
) ) )
94, 8mtbird 674 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  -.  M  <_  N )
10 zltnle 9313 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
1110ancoms 268 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  -.  M  <_  N )
)
1211adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  ( N  < 
M  <->  -.  M  <_  N ) )
139, 12mpbird 167 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M ... N )  =  (/) )  ->  N  <  M
)
1413ex 115 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M ... N )  =  (/)  ->  N  <  M ) )
151, 14impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363   E.wex 1502    e. wcel 2158   (/)c0 3434   class class class wbr 4015   ` cfv 5228  (class class class)co 5888    < clt 8006    <_ cle 8007   ZZcz 9267   ZZ>=cuz 9542   ...cfz 10022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-fz 10023
This theorem is referenced by:  fz1n  10058  fz10  10060  fzsuc2  10093  fzm1  10114  fzon  10180  exfzdc  10254  fzfig  10444  uzsinds  10456  hashfzp1  10818  fisumrev2  11468  isumsplit  11513  arisum2  11521  cvgratnnlemseq  11548  lgsdir2lem3  14784
  Copyright terms: Public domain W3C validator