ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idprl Unicode version

Theorem 1idprl 7702
Description: Lemma for 1idpr 7704. (Contributed by Jim Kingdon, 13-Dec-2019.)
Assertion
Ref Expression
1idprl  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )

Proof of Theorem 1idprl
Dummy variables  x  y  z  w  v  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3212 . . . . . 6  |-  ( 1st `  1P )  C_  ( 1st `  1P )
2 rexss 3259 . . . . . 6  |-  ( ( 1st `  1P ) 
C_  ( 1st `  1P )  ->  ( E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g )  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
31, 2ax-mp 5 . . . . 5  |-  ( E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
)  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) )
4 1pr 7666 . . . . . . . . . . 11  |-  1P  e.  P.
5 prop 7587 . . . . . . . . . . . 12  |-  ( 1P  e.  P.  ->  <. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P. )
6 elprnql 7593 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P.  /\  g  e.  ( 1st `  1P ) )  -> 
g  e.  Q. )
75, 6sylan 283 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  g  e.  ( 1st `  1P ) )  -> 
g  e.  Q. )
84, 7mpan 424 . . . . . . . . . 10  |-  ( g  e.  ( 1st `  1P )  ->  g  e.  Q. )
9 prop 7587 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
10 elprnql 7593 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
119, 10sylan 283 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
12 breq1 4046 . . . . . . . . . . . . 13  |-  ( x  =  ( f  .Q  g )  ->  (
x  <Q  f  <->  ( f  .Q  g )  <Q  f
) )
13123ad2ant3 1022 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  ( f  .Q  g ) 
<Q  f ) )
14 1prl 7667 . . . . . . . . . . . . . . 15  |-  ( 1st `  1P )  =  {
g  |  g  <Q  1Q }
1514abeq2i 2315 . . . . . . . . . . . . . 14  |-  ( g  e.  ( 1st `  1P ) 
<->  g  <Q  1Q )
16 1nq 7478 . . . . . . . . . . . . . . . . 17  |-  1Q  e.  Q.
17 ltmnqg 7513 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  Q.  /\  1Q  e.  Q.  /\  f  e.  Q. )  ->  (
g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
1816, 17mp3an2 1337 . . . . . . . . . . . . . . . 16  |-  ( ( g  e.  Q.  /\  f  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
1918ancoms 268 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
20 mulidnq 7501 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  Q.  ->  (
f  .Q  1Q )  =  f )
2120breq2d 4055 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
( f  .Q  g
)  <Q  ( f  .Q  1Q )  <->  ( f  .Q  g )  <Q  f
) )
2221adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( ( f  .Q  g )  <Q  (
f  .Q  1Q )  <-> 
( f  .Q  g
)  <Q  f ) )
2319, 22bitrd 188 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  f
) )
2415, 23bitr2id 193 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( ( f  .Q  g )  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
25243adant3 1019 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( ( f  .Q  g )  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
2613, 25bitrd 188 . . . . . . . . . . 11  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
2711, 26syl3an1 1282 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
288, 27syl3an2 1283 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
29283expia 1207 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P ) )  -> 
( x  =  ( f  .Q  g )  ->  ( x  <Q  f  <-> 
g  e.  ( 1st `  1P ) ) ) )
3029pm5.32rd 451 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P ) )  -> 
( ( x  <Q  f  /\  x  =  ( f  .Q  g ) )  <->  ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
3130rexbidva 2502 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) ( x  <Q  f  /\  x  =  ( f  .Q  g ) )  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
32 r19.42v 2662 . . . . . 6  |-  ( E. g  e.  ( 1st `  1P ) ( x 
<Q  f  /\  x  =  ( f  .Q  g ) )  <->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
3331, 32bitr3di 195 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) )  <->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
343, 33bitrid 192 . . . 4  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g )  <-> 
( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) ) )
3534rexbidva 2502 . . 3  |-  ( A  e.  P.  ->  ( E. f  e.  ( 1st `  A ) E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
)  <->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) ) )
36 df-imp 7581 . . . . 5  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 1st `  y )  /\  v  e.  ( 1st `  z
)  /\  w  =  ( u  .Q  v
) ) } ,  { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 2nd `  y )  /\  v  e.  ( 2nd `  z
)  /\  w  =  ( u  .Q  v
) ) } >. )
37 mulclnq 7488 . . . . 5  |-  ( ( u  e.  Q.  /\  v  e.  Q. )  ->  ( u  .Q  v
)  e.  Q. )
3836, 37genpelvl 7624 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( x  e.  ( 1st `  ( A  .P.  1P ) )  <->  E. f  e.  ( 1st `  A ) E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) ) )
394, 38mpan2 425 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  ( A  .P.  1P ) )  <->  E. f  e.  ( 1st `  A
) E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
40 prnmaxl 7600 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) x 
<Q  f )
419, 40sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) x 
<Q  f )
42 ltrelnq 7477 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
4342brel 4726 . . . . . . . . . . . 12  |-  ( x 
<Q  f  ->  ( x  e.  Q.  /\  f  e.  Q. ) )
44 ltmnqg 7513 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
4544adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
46 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  e.  Q. )
47 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  f  e.  Q. )
48 recclnq 7504 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  ( *Q `  f )  e. 
Q. )
4948adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( *Q `  f
)  e.  Q. )
50 mulcomnqg 7495 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
5150adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
5245, 46, 47, 49, 51caovord2d 6115 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  <->  ( x  .Q  ( *Q
`  f ) ) 
<Q  ( f  .Q  ( *Q `  f ) ) ) )
53 recidnq 7505 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
f  .Q  ( *Q
`  f ) )  =  1Q )
5453breq2d 4055 . . . . . . . . . . . . . . 15  |-  ( f  e.  Q.  ->  (
( x  .Q  ( *Q `  f ) ) 
<Q  ( f  .Q  ( *Q `  f ) )  <-> 
( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
5554adantl 277 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( ( x  .Q  ( *Q `  f ) )  <Q  ( f  .Q  ( *Q `  f
) )  <->  ( x  .Q  ( *Q `  f
) )  <Q  1Q ) )
5652, 55bitrd 188 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  <->  ( x  .Q  ( *Q
`  f ) ) 
<Q  1Q ) )
5756biimpd 144 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  ->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
5843, 57mpcom 36 . . . . . . . . . . 11  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  <Q  1Q )
59 mulclnq 7488 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  ( *Q `  f )  e.  Q. )  -> 
( x  .Q  ( *Q `  f ) )  e.  Q. )
6048, 59sylan2 286 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  ( *Q `  f ) )  e.  Q. )
6143, 60syl 14 . . . . . . . . . . . 12  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  e. 
Q. )
62 breq1 4046 . . . . . . . . . . . . 13  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( g  <Q  1Q  <->  ( x  .Q  ( *Q `  f ) )  <Q  1Q )
)
6362, 14elab2g 2919 . . . . . . . . . . . 12  |-  ( ( x  .Q  ( *Q
`  f ) )  e.  Q.  ->  (
( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P ) 
<->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
6461, 63syl 14 . . . . . . . . . . 11  |-  ( x 
<Q  f  ->  ( ( x  .Q  ( *Q
`  f ) )  e.  ( 1st `  1P ) 
<->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
6558, 64mpbird 167 . . . . . . . . . 10  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P ) )
66 mulassnqg 7496 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
( y  .Q  z
)  .Q  w )  =  ( y  .Q  ( z  .Q  w
) ) )
6766adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( (
y  .Q  z )  .Q  w )  =  ( y  .Q  (
z  .Q  w ) ) )
6847, 46, 49, 51, 67caov12d 6127 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  ( f  .Q  ( *Q `  f
) ) ) )
6953oveq2d 5959 . . . . . . . . . . . . 13  |-  ( f  e.  Q.  ->  (
x  .Q  ( f  .Q  ( *Q `  f ) ) )  =  ( x  .Q  1Q ) )
7069adantl 277 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  (
f  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  1Q ) )
71 mulidnq 7501 . . . . . . . . . . . . 13  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
7271adantr 276 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  1Q )  =  x )
7368, 70, 723eqtrrd 2242 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7443, 73syl 14 . . . . . . . . . 10  |-  ( x 
<Q  f  ->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) )
75 oveq2 5951 . . . . . . . . . . . 12  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( f  .Q  g )  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7675eqeq2d 2216 . . . . . . . . . . 11  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( x  =  ( f  .Q  g )  <->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) ) )
7776rspcev 2876 . . . . . . . . . 10  |-  ( ( ( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )
7865, 74, 77syl2anc 411 . . . . . . . . 9  |-  ( x 
<Q  f  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )
7978a1i 9 . . . . . . . 8  |-  ( f  e.  ( 1st `  A
)  ->  ( x  <Q  f  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
8079ancld 325 . . . . . . 7  |-  ( f  e.  ( 1st `  A
)  ->  ( x  <Q  f  ->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
8180reximia 2600 . . . . . 6  |-  ( E. f  e.  ( 1st `  A ) x  <Q  f  ->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) )
8241, 81syl 14 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) ) )
8382ex 115 . . . 4  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  A )  ->  E. f  e.  ( 1st `  A
) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
84 prcdnql 7596 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( x  <Q  f  ->  x  e.  ( 1st `  A ) ) )
859, 84sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( x  <Q  f  ->  x  e.  ( 1st `  A ) ) )
8685adantrd 279 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )  ->  x  e.  ( 1st `  A ) ) )
8786rexlimdva 2622 . . . 4  |-  ( A  e.  P.  ->  ( E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) )  ->  x  e.  ( 1st `  A
) ) )
8883, 87impbid 129 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  A )  <->  E. f  e.  ( 1st `  A
) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
8935, 39, 883bitr4d 220 . 2  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  ( A  .P.  1P ) )  <->  x  e.  ( 1st `  A ) ) )
9089eqrdv 2202 1  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   E.wrex 2484    C_ wss 3165   <.cop 3635   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   1stc1st 6223   2ndc2nd 6224   Q.cnq 7392   1Qc1q 7393    .Q cmq 7395   *Qcrq 7396    <Q cltq 7397   P.cnp 7403   1Pc1p 7404    .P. cmp 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-inp 7578  df-i1p 7579  df-imp 7581
This theorem is referenced by:  1idpr  7704
  Copyright terms: Public domain W3C validator