ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idprl Unicode version

Theorem 1idprl 7738
Description: Lemma for 1idpr 7740. (Contributed by Jim Kingdon, 13-Dec-2019.)
Assertion
Ref Expression
1idprl  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )

Proof of Theorem 1idprl
Dummy variables  x  y  z  w  v  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3221 . . . . . 6  |-  ( 1st `  1P )  C_  ( 1st `  1P )
2 rexss 3268 . . . . . 6  |-  ( ( 1st `  1P ) 
C_  ( 1st `  1P )  ->  ( E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g )  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
31, 2ax-mp 5 . . . . 5  |-  ( E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
)  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) )
4 1pr 7702 . . . . . . . . . . 11  |-  1P  e.  P.
5 prop 7623 . . . . . . . . . . . 12  |-  ( 1P  e.  P.  ->  <. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P. )
6 elprnql 7629 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  1P ) ,  ( 2nd `  1P ) >.  e.  P.  /\  g  e.  ( 1st `  1P ) )  -> 
g  e.  Q. )
75, 6sylan 283 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  g  e.  ( 1st `  1P ) )  -> 
g  e.  Q. )
84, 7mpan 424 . . . . . . . . . 10  |-  ( g  e.  ( 1st `  1P )  ->  g  e.  Q. )
9 prop 7623 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
10 elprnql 7629 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
119, 10sylan 283 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
12 breq1 4062 . . . . . . . . . . . . 13  |-  ( x  =  ( f  .Q  g )  ->  (
x  <Q  f  <->  ( f  .Q  g )  <Q  f
) )
13123ad2ant3 1023 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  ( f  .Q  g ) 
<Q  f ) )
14 1prl 7703 . . . . . . . . . . . . . . 15  |-  ( 1st `  1P )  =  {
g  |  g  <Q  1Q }
1514abeq2i 2318 . . . . . . . . . . . . . 14  |-  ( g  e.  ( 1st `  1P ) 
<->  g  <Q  1Q )
16 1nq 7514 . . . . . . . . . . . . . . . . 17  |-  1Q  e.  Q.
17 ltmnqg 7549 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  Q.  /\  1Q  e.  Q.  /\  f  e.  Q. )  ->  (
g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
1816, 17mp3an2 1338 . . . . . . . . . . . . . . . 16  |-  ( ( g  e.  Q.  /\  f  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
1918ancoms 268 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  (
f  .Q  1Q ) ) )
20 mulidnq 7537 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  Q.  ->  (
f  .Q  1Q )  =  f )
2120breq2d 4071 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
( f  .Q  g
)  <Q  ( f  .Q  1Q )  <->  ( f  .Q  g )  <Q  f
) )
2221adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( ( f  .Q  g )  <Q  (
f  .Q  1Q )  <-> 
( f  .Q  g
)  <Q  f ) )
2319, 22bitrd 188 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( g  <Q  1Q  <->  ( f  .Q  g )  <Q  f
) )
2415, 23bitr2id 193 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( ( f  .Q  g )  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
25243adant3 1020 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( ( f  .Q  g )  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
2613, 25bitrd 188 . . . . . . . . . . 11  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
2711, 26syl3an1 1283 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  Q.  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
288, 27syl3an2 1284 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) )  -> 
( x  <Q  f  <->  g  e.  ( 1st `  1P ) ) )
29283expia 1208 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P ) )  -> 
( x  =  ( f  .Q  g )  ->  ( x  <Q  f  <-> 
g  e.  ( 1st `  1P ) ) ) )
3029pm5.32rd 451 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  /\  g  e.  ( 1st `  1P ) )  -> 
( ( x  <Q  f  /\  x  =  ( f  .Q  g ) )  <->  ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
3130rexbidva 2505 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) ( x  <Q  f  /\  x  =  ( f  .Q  g ) )  <->  E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) ) ) )
32 r19.42v 2665 . . . . . 6  |-  ( E. g  e.  ( 1st `  1P ) ( x 
<Q  f  /\  x  =  ( f  .Q  g ) )  <->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
3331, 32bitr3di 195 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) ( g  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  g ) )  <->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
343, 33bitrid 192 . . . 4  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g )  <-> 
( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) ) )
3534rexbidva 2505 . . 3  |-  ( A  e.  P.  ->  ( E. f  e.  ( 1st `  A ) E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
)  <->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) ) )
36 df-imp 7617 . . . . 5  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 1st `  y )  /\  v  e.  ( 1st `  z
)  /\  w  =  ( u  .Q  v
) ) } ,  { w  e.  Q.  |  E. u  e.  Q.  E. v  e.  Q.  (
u  e.  ( 2nd `  y )  /\  v  e.  ( 2nd `  z
)  /\  w  =  ( u  .Q  v
) ) } >. )
37 mulclnq 7524 . . . . 5  |-  ( ( u  e.  Q.  /\  v  e.  Q. )  ->  ( u  .Q  v
)  e.  Q. )
3836, 37genpelvl 7660 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( x  e.  ( 1st `  ( A  .P.  1P ) )  <->  E. f  e.  ( 1st `  A ) E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) ) )
394, 38mpan2 425 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  ( A  .P.  1P ) )  <->  E. f  e.  ( 1st `  A
) E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
40 prnmaxl 7636 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) x 
<Q  f )
419, 40sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) x 
<Q  f )
42 ltrelnq 7513 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
4342brel 4745 . . . . . . . . . . . 12  |-  ( x 
<Q  f  ->  ( x  e.  Q.  /\  f  e.  Q. ) )
44 ltmnqg 7549 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
4544adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
46 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  e.  Q. )
47 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  f  e.  Q. )
48 recclnq 7540 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  ( *Q `  f )  e. 
Q. )
4948adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( *Q `  f
)  e.  Q. )
50 mulcomnqg 7531 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
5150adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
5245, 46, 47, 49, 51caovord2d 6139 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  <->  ( x  .Q  ( *Q
`  f ) ) 
<Q  ( f  .Q  ( *Q `  f ) ) ) )
53 recidnq 7541 . . . . . . . . . . . . . . . 16  |-  ( f  e.  Q.  ->  (
f  .Q  ( *Q
`  f ) )  =  1Q )
5453breq2d 4071 . . . . . . . . . . . . . . 15  |-  ( f  e.  Q.  ->  (
( x  .Q  ( *Q `  f ) ) 
<Q  ( f  .Q  ( *Q `  f ) )  <-> 
( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
5554adantl 277 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( ( x  .Q  ( *Q `  f ) )  <Q  ( f  .Q  ( *Q `  f
) )  <->  ( x  .Q  ( *Q `  f
) )  <Q  1Q ) )
5652, 55bitrd 188 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  <->  ( x  .Q  ( *Q
`  f ) ) 
<Q  1Q ) )
5756biimpd 144 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  ->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
5843, 57mpcom 36 . . . . . . . . . . 11  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  <Q  1Q )
59 mulclnq 7524 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  ( *Q `  f )  e.  Q. )  -> 
( x  .Q  ( *Q `  f ) )  e.  Q. )
6048, 59sylan2 286 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  ( *Q `  f ) )  e.  Q. )
6143, 60syl 14 . . . . . . . . . . . 12  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  e. 
Q. )
62 breq1 4062 . . . . . . . . . . . . 13  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( g  <Q  1Q  <->  ( x  .Q  ( *Q `  f ) )  <Q  1Q )
)
6362, 14elab2g 2927 . . . . . . . . . . . 12  |-  ( ( x  .Q  ( *Q
`  f ) )  e.  Q.  ->  (
( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P ) 
<->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
6461, 63syl 14 . . . . . . . . . . 11  |-  ( x 
<Q  f  ->  ( ( x  .Q  ( *Q
`  f ) )  e.  ( 1st `  1P ) 
<->  ( x  .Q  ( *Q `  f ) ) 
<Q  1Q ) )
6558, 64mpbird 167 . . . . . . . . . 10  |-  ( x 
<Q  f  ->  ( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P ) )
66 mulassnqg 7532 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
( y  .Q  z
)  .Q  w )  =  ( y  .Q  ( z  .Q  w
) ) )
6766adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  Q.  /\  f  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( (
y  .Q  z )  .Q  w )  =  ( y  .Q  (
z  .Q  w ) ) )
6847, 46, 49, 51, 67caov12d 6151 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  ( f  .Q  ( *Q `  f
) ) ) )
6953oveq2d 5983 . . . . . . . . . . . . 13  |-  ( f  e.  Q.  ->  (
x  .Q  ( f  .Q  ( *Q `  f ) ) )  =  ( x  .Q  1Q ) )
7069adantl 277 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  (
f  .Q  ( *Q
`  f ) ) )  =  ( x  .Q  1Q ) )
71 mulidnq 7537 . . . . . . . . . . . . 13  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
7271adantr 276 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  .Q  1Q )  =  x )
7368, 70, 723eqtrrd 2245 . . . . . . . . . . 11  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7443, 73syl 14 . . . . . . . . . 10  |-  ( x 
<Q  f  ->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) )
75 oveq2 5975 . . . . . . . . . . . 12  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( f  .Q  g )  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )
7675eqeq2d 2219 . . . . . . . . . . 11  |-  ( g  =  ( x  .Q  ( *Q `  f ) )  ->  ( x  =  ( f  .Q  g )  <->  x  =  ( f  .Q  (
x  .Q  ( *Q
`  f ) ) ) ) )
7776rspcev 2884 . . . . . . . . . 10  |-  ( ( ( x  .Q  ( *Q `  f ) )  e.  ( 1st `  1P )  /\  x  =  ( f  .Q  ( x  .Q  ( *Q `  f ) ) ) )  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )
7865, 74, 77syl2anc 411 . . . . . . . . 9  |-  ( x 
<Q  f  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )
7978a1i 9 . . . . . . . 8  |-  ( f  e.  ( 1st `  A
)  ->  ( x  <Q  f  ->  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) )
8079ancld 325 . . . . . . 7  |-  ( f  e.  ( 1st `  A
)  ->  ( x  <Q  f  ->  ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
8180reximia 2603 . . . . . 6  |-  ( E. f  e.  ( 1st `  A ) x  <Q  f  ->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g ) ) )
8241, 81syl 14 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) ) )
8382ex 115 . . . 4  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  A )  ->  E. f  e.  ( 1st `  A
) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
84 prcdnql 7632 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( x  <Q  f  ->  x  e.  ( 1st `  A ) ) )
859, 84sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( x  <Q  f  ->  x  e.  ( 1st `  A ) ) )
8685adantrd 279 . . . . 5  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
( ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) )  ->  x  e.  ( 1st `  A ) ) )
8786rexlimdva 2625 . . . 4  |-  ( A  e.  P.  ->  ( E. f  e.  ( 1st `  A ) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  ( f  .Q  g
) )  ->  x  e.  ( 1st `  A
) ) )
8883, 87impbid 129 . . 3  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  A )  <->  E. f  e.  ( 1st `  A
) ( x  <Q  f  /\  E. g  e.  ( 1st `  1P ) x  =  (
f  .Q  g ) ) ) )
8935, 39, 883bitr4d 220 . 2  |-  ( A  e.  P.  ->  (
x  e.  ( 1st `  ( A  .P.  1P ) )  <->  x  e.  ( 1st `  A ) ) )
9089eqrdv 2205 1  |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   <.cop 3646   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428   1Qc1q 7429    .Q cmq 7431   *Qcrq 7432    <Q cltq 7433   P.cnp 7439   1Pc1p 7440    .P. cmp 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-inp 7614  df-i1p 7615  df-imp 7617
This theorem is referenced by:  1idpr  7740
  Copyright terms: Public domain W3C validator