Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvpom | Unicode version |
Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.) |
Ref | Expression |
---|---|
cnvpom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 2596 | . . . . . . 7 | |
2 | ralidm 3515 | . . . . . . . . 9 | |
3 | r19.3rmv 3505 | . . . . . . . . . 10 | |
4 | 3 | ralbidv 2470 | . . . . . . . . 9 |
5 | 2, 4 | bitr2id 192 | . . . . . . . 8 |
6 | 5 | anbi1d 462 | . . . . . . 7 |
7 | 1, 6 | syl5bb 191 | . . . . . 6 |
8 | r19.26 2596 | . . . . . . 7 | |
9 | 8 | ralbii 2476 | . . . . . 6 |
10 | r19.26 2596 | . . . . . 6 | |
11 | 7, 9, 10 | 3bitr4g 222 | . . . . 5 |
12 | r19.26 2596 | . . . . . . . 8 | |
13 | vex 2733 | . . . . . . . . . . . . 13 | |
14 | 13, 13 | brcnv 4794 | . . . . . . . . . . . 12 |
15 | id 19 | . . . . . . . . . . . . 13 | |
16 | 15, 15 | breq12d 4002 | . . . . . . . . . . . 12 |
17 | 14, 16 | syl5bb 191 | . . . . . . . . . . 11 |
18 | 17 | notbid 662 | . . . . . . . . . 10 |
19 | 18 | cbvralv 2696 | . . . . . . . . 9 |
20 | vex 2733 | . . . . . . . . . . . . 13 | |
21 | 13, 20 | brcnv 4794 | . . . . . . . . . . . 12 |
22 | vex 2733 | . . . . . . . . . . . . 13 | |
23 | 20, 22 | brcnv 4794 | . . . . . . . . . . . 12 |
24 | 21, 23 | anbi12ci 458 | . . . . . . . . . . 11 |
25 | 13, 22 | brcnv 4794 | . . . . . . . . . . 11 |
26 | 24, 25 | imbi12i 238 | . . . . . . . . . 10 |
27 | 26 | ralbii 2476 | . . . . . . . . 9 |
28 | 19, 27 | anbi12i 457 | . . . . . . . 8 |
29 | 12, 28 | bitr2i 184 | . . . . . . 7 |
30 | 29 | ralbii 2476 | . . . . . 6 |
31 | ralcom 2633 | . . . . . 6 | |
32 | 30, 31 | bitri 183 | . . . . 5 |
33 | 11, 32 | bitrdi 195 | . . . 4 |
34 | 33 | ralbidv 2470 | . . 3 |
35 | ralcom 2633 | . . 3 | |
36 | ralcom 2633 | . . 3 | |
37 | 34, 35, 36 | 3bitr4g 222 | . 2 |
38 | df-po 4281 | . 2 | |
39 | df-po 4281 | . 2 | |
40 | 37, 38, 39 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wex 1485 wcel 2141 wral 2448 class class class wbr 3989 wpo 4279 ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-po 4281 df-cnv 4619 |
This theorem is referenced by: cnvsom 5154 |
Copyright terms: Public domain | W3C validator |