Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvpom | Unicode version |
Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.) |
Ref | Expression |
---|---|
cnvpom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 2592 | . . . . . . 7 | |
2 | ralidm 3509 | . . . . . . . . 9 | |
3 | r19.3rmv 3499 | . . . . . . . . . 10 | |
4 | 3 | ralbidv 2466 | . . . . . . . . 9 |
5 | 2, 4 | bitr2id 192 | . . . . . . . 8 |
6 | 5 | anbi1d 461 | . . . . . . 7 |
7 | 1, 6 | syl5bb 191 | . . . . . 6 |
8 | r19.26 2592 | . . . . . . 7 | |
9 | 8 | ralbii 2472 | . . . . . 6 |
10 | r19.26 2592 | . . . . . 6 | |
11 | 7, 9, 10 | 3bitr4g 222 | . . . . 5 |
12 | r19.26 2592 | . . . . . . . 8 | |
13 | vex 2729 | . . . . . . . . . . . . 13 | |
14 | 13, 13 | brcnv 4787 | . . . . . . . . . . . 12 |
15 | id 19 | . . . . . . . . . . . . 13 | |
16 | 15, 15 | breq12d 3995 | . . . . . . . . . . . 12 |
17 | 14, 16 | syl5bb 191 | . . . . . . . . . . 11 |
18 | 17 | notbid 657 | . . . . . . . . . 10 |
19 | 18 | cbvralv 2692 | . . . . . . . . 9 |
20 | vex 2729 | . . . . . . . . . . . . 13 | |
21 | 13, 20 | brcnv 4787 | . . . . . . . . . . . 12 |
22 | vex 2729 | . . . . . . . . . . . . 13 | |
23 | 20, 22 | brcnv 4787 | . . . . . . . . . . . 12 |
24 | 21, 23 | anbi12ci 457 | . . . . . . . . . . 11 |
25 | 13, 22 | brcnv 4787 | . . . . . . . . . . 11 |
26 | 24, 25 | imbi12i 238 | . . . . . . . . . 10 |
27 | 26 | ralbii 2472 | . . . . . . . . 9 |
28 | 19, 27 | anbi12i 456 | . . . . . . . 8 |
29 | 12, 28 | bitr2i 184 | . . . . . . 7 |
30 | 29 | ralbii 2472 | . . . . . 6 |
31 | ralcom 2629 | . . . . . 6 | |
32 | 30, 31 | bitri 183 | . . . . 5 |
33 | 11, 32 | bitrdi 195 | . . . 4 |
34 | 33 | ralbidv 2466 | . . 3 |
35 | ralcom 2629 | . . 3 | |
36 | ralcom 2629 | . . 3 | |
37 | 34, 35, 36 | 3bitr4g 222 | . 2 |
38 | df-po 4274 | . 2 | |
39 | df-po 4274 | . 2 | |
40 | 37, 38, 39 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wex 1480 wcel 2136 wral 2444 class class class wbr 3982 wpo 4272 ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-po 4274 df-cnv 4612 |
This theorem is referenced by: cnvsom 5147 |
Copyright terms: Public domain | W3C validator |