ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvpom Unicode version

Theorem cnvpom 5167
Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvpom  |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem cnvpom
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2603 . . . . . . 7  |-  ( A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  ( A. w  e.  A  A. z  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
2 ralidm 3523 . . . . . . . . 9  |-  ( A. w  e.  A  A. w  e.  A  -.  w R w  <->  A. w  e.  A  -.  w R w )
3 r19.3rmv 3513 . . . . . . . . . 10  |-  ( E. x  x  e.  A  ->  ( -.  w R w  <->  A. z  e.  A  -.  w R w ) )
43ralbidv 2477 . . . . . . . . 9  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  -.  w R w  <->  A. w  e.  A  A. z  e.  A  -.  w R w ) )
52, 4bitr2id 193 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  -.  w R w  <->  A. w  e.  A  A. w  e.  A  -.  w R w ) )
65anbi1d 465 . . . . . . 7  |-  ( E. x  x  e.  A  ->  ( ( A. w  e.  A  A. z  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) ) )
71, 6bitrid 192 . . . . . 6  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) ) )
8 r19.26 2603 . . . . . . 7  |-  ( A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) )
98ralbii 2483 . . . . . 6  |-  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <->  A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) ) )
10 r19.26 2603 . . . . . 6  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  ( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
117, 9, 103bitr4g 223 . . . . 5  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) ) )
12 r19.26 2603 . . . . . . . 8  |-  ( A. z  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  ( A. z  e.  A  -.  z `' R z  /\  A. z  e.  A  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
13 vex 2740 . . . . . . . . . . . . 13  |-  z  e. 
_V
1413, 13brcnv 4806 . . . . . . . . . . . 12  |-  ( z `' R z  <->  z R
z )
15 id 19 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  z  =  w )
1615, 15breq12d 4013 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
z R z  <->  w R w ) )
1714, 16bitrid 192 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
z `' R z  <-> 
w R w ) )
1817notbid 667 . . . . . . . . . 10  |-  ( z  =  w  ->  ( -.  z `' R z  <->  -.  w R w ) )
1918cbvralv 2703 . . . . . . . . 9  |-  ( A. z  e.  A  -.  z `' R z  <->  A. w  e.  A  -.  w R w )
20 vex 2740 . . . . . . . . . . . . 13  |-  y  e. 
_V
2113, 20brcnv 4806 . . . . . . . . . . . 12  |-  ( z `' R y  <->  y R
z )
22 vex 2740 . . . . . . . . . . . . 13  |-  w  e. 
_V
2320, 22brcnv 4806 . . . . . . . . . . . 12  |-  ( y `' R w  <->  w R
y )
2421, 23anbi12ci 461 . . . . . . . . . . 11  |-  ( ( z `' R y  /\  y `' R w )  <->  ( w R y  /\  y R z ) )
2513, 22brcnv 4806 . . . . . . . . . . 11  |-  ( z `' R w  <->  w R
z )
2624, 25imbi12i 239 . . . . . . . . . 10  |-  ( ( ( z `' R
y  /\  y `' R w )  -> 
z `' R w )  <->  ( ( w R y  /\  y R z )  ->  w R z ) )
2726ralbii 2483 . . . . . . . . 9  |-  ( A. z  e.  A  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w )  <->  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R z ) )
2819, 27anbi12i 460 . . . . . . . 8  |-  ( ( A. z  e.  A  -.  z `' R z  /\  A. z  e.  A  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
2912, 28bitr2i 185 . . . . . . 7  |-  ( ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3029ralbii 2483 . . . . . 6  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. w  e.  A  A. z  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
31 ralcom 2640 . . . . . 6  |-  ( A. w  e.  A  A. z  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3230, 31bitri 184 . . . . 5  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3311, 32bitrdi 196 . . . 4  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
3433ralbidv 2477 . . 3  |-  ( E. x  x  e.  A  ->  ( A. y  e.  A  A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. y  e.  A  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
35 ralcom 2640 . . 3  |-  ( A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <->  A. y  e.  A  A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) ) )
36 ralcom 2640 . . 3  |-  ( A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  A. y  e.  A  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3734, 35, 363bitr4g 223 . 2  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
38 df-po 4293 . 2  |-  ( R  Po  A  <->  A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) ) )
39 df-po 4293 . 2  |-  ( `' R  Po  A  <->  A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
4037, 38, 393bitr4g 223 1  |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1492    e. wcel 2148   A.wral 2455   class class class wbr 4000    Po wpo 4291   `'ccnv 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-po 4293  df-cnv 4631
This theorem is referenced by:  cnvsom  5168
  Copyright terms: Public domain W3C validator