| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvpom | Unicode version | ||
| Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.) |
| Ref | Expression |
|---|---|
| cnvpom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 2634 |
. . . . . . 7
| |
| 2 | ralidm 3569 |
. . . . . . . . 9
| |
| 3 | r19.3rmv 3559 |
. . . . . . . . . 10
| |
| 4 | 3 | ralbidv 2508 |
. . . . . . . . 9
|
| 5 | 2, 4 | bitr2id 193 |
. . . . . . . 8
|
| 6 | 5 | anbi1d 465 |
. . . . . . 7
|
| 7 | 1, 6 | bitrid 192 |
. . . . . 6
|
| 8 | r19.26 2634 |
. . . . . . 7
| |
| 9 | 8 | ralbii 2514 |
. . . . . 6
|
| 10 | r19.26 2634 |
. . . . . 6
| |
| 11 | 7, 9, 10 | 3bitr4g 223 |
. . . . 5
|
| 12 | r19.26 2634 |
. . . . . . . 8
| |
| 13 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 14 | 13, 13 | brcnv 4879 |
. . . . . . . . . . . 12
|
| 15 | id 19 |
. . . . . . . . . . . . 13
| |
| 16 | 15, 15 | breq12d 4072 |
. . . . . . . . . . . 12
|
| 17 | 14, 16 | bitrid 192 |
. . . . . . . . . . 11
|
| 18 | 17 | notbid 669 |
. . . . . . . . . 10
|
| 19 | 18 | cbvralv 2742 |
. . . . . . . . 9
|
| 20 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 21 | 13, 20 | brcnv 4879 |
. . . . . . . . . . . 12
|
| 22 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 23 | 20, 22 | brcnv 4879 |
. . . . . . . . . . . 12
|
| 24 | 21, 23 | anbi12ci 461 |
. . . . . . . . . . 11
|
| 25 | 13, 22 | brcnv 4879 |
. . . . . . . . . . 11
|
| 26 | 24, 25 | imbi12i 239 |
. . . . . . . . . 10
|
| 27 | 26 | ralbii 2514 |
. . . . . . . . 9
|
| 28 | 19, 27 | anbi12i 460 |
. . . . . . . 8
|
| 29 | 12, 28 | bitr2i 185 |
. . . . . . 7
|
| 30 | 29 | ralbii 2514 |
. . . . . 6
|
| 31 | ralcom 2671 |
. . . . . 6
| |
| 32 | 30, 31 | bitri 184 |
. . . . 5
|
| 33 | 11, 32 | bitrdi 196 |
. . . 4
|
| 34 | 33 | ralbidv 2508 |
. . 3
|
| 35 | ralcom 2671 |
. . 3
| |
| 36 | ralcom 2671 |
. . 3
| |
| 37 | 34, 35, 36 | 3bitr4g 223 |
. 2
|
| 38 | df-po 4361 |
. 2
| |
| 39 | df-po 4361 |
. 2
| |
| 40 | 37, 38, 39 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-po 4361 df-cnv 4701 |
| This theorem is referenced by: cnvsom 5245 |
| Copyright terms: Public domain | W3C validator |