ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdisj Unicode version

Theorem fnresdisj 5368
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj  |-  ( F  Fn  A  ->  (
( A  i^i  B
)  =  (/)  <->  ( F  |`  B )  =  (/) ) )

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 4974 . . 3  |-  Rel  ( F  |`  B )
2 reldm0 4884 . . 3  |-  ( Rel  ( F  |`  B )  ->  ( ( F  |`  B )  =  (/)  <->  dom  ( F  |`  B )  =  (/) ) )
31, 2ax-mp 5 . 2  |-  ( ( F  |`  B )  =  (/)  <->  dom  ( F  |`  B )  =  (/) )
4 dmres 4967 . . . . 5  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
5 incom 3355 . . . . 5  |-  ( B  i^i  dom  F )  =  ( dom  F  i^i  B )
64, 5eqtri 2217 . . . 4  |-  dom  ( F  |`  B )  =  ( dom  F  i^i  B )
7 fndm 5357 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87ineq1d 3363 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  i^i  B )  =  ( A  i^i  B ) )
96, 8eqtrid 2241 . . 3  |-  ( F  Fn  A  ->  dom  ( F  |`  B )  =  ( A  i^i  B ) )
109eqeq1d 2205 . 2  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  (/)  <->  ( A  i^i  B )  =  (/) ) )
113, 10bitr2id 193 1  |-  ( F  Fn  A  ->  (
( A  i^i  B
)  =  (/)  <->  ( F  |`  B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    i^i cin 3156   (/)c0 3450   dom cdm 4663    |` cres 4665   Rel wrel 4668    Fn wfn 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-dm 4673  df-res 4675  df-fn 5261
This theorem is referenced by:  fvsnun2  5760  fseq1p1m1  10169
  Copyright terms: Public domain W3C validator