ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdisj Unicode version

Theorem fnresdisj 5328
Description: A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fnresdisj  |-  ( F  Fn  A  ->  (
( A  i^i  B
)  =  (/)  <->  ( F  |`  B )  =  (/) ) )

Proof of Theorem fnresdisj
StepHypRef Expression
1 relres 4937 . . 3  |-  Rel  ( F  |`  B )
2 reldm0 4847 . . 3  |-  ( Rel  ( F  |`  B )  ->  ( ( F  |`  B )  =  (/)  <->  dom  ( F  |`  B )  =  (/) ) )
31, 2ax-mp 5 . 2  |-  ( ( F  |`  B )  =  (/)  <->  dom  ( F  |`  B )  =  (/) )
4 dmres 4930 . . . . 5  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
5 incom 3329 . . . . 5  |-  ( B  i^i  dom  F )  =  ( dom  F  i^i  B )
64, 5eqtri 2198 . . . 4  |-  dom  ( F  |`  B )  =  ( dom  F  i^i  B )
7 fndm 5317 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87ineq1d 3337 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  i^i  B )  =  ( A  i^i  B ) )
96, 8eqtrid 2222 . . 3  |-  ( F  Fn  A  ->  dom  ( F  |`  B )  =  ( A  i^i  B ) )
109eqeq1d 2186 . 2  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  (/)  <->  ( A  i^i  B )  =  (/) ) )
113, 10bitr2id 193 1  |-  ( F  Fn  A  ->  (
( A  i^i  B
)  =  (/)  <->  ( F  |`  B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    i^i cin 3130   (/)c0 3424   dom cdm 4628    |` cres 4630   Rel wrel 4633    Fn wfn 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-dm 4638  df-res 4640  df-fn 5221
This theorem is referenced by:  fvsnun2  5716  fseq1p1m1  10096
  Copyright terms: Public domain W3C validator