ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm Unicode version

Theorem reldm 6092
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Distinct variable group:    x, A

Proof of Theorem reldm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 6091 . . 3  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
2 vex 2692 . . . . . . 7  |-  x  e. 
_V
3 1stexg 6073 . . . . . . 7  |-  ( x  e.  _V  ->  ( 1st `  x )  e. 
_V )
42, 3ax-mp 5 . . . . . 6  |-  ( 1st `  x )  e.  _V
5 eqid 2140 . . . . . 6  |-  ( x  e.  A  |->  ( 1st `  x ) )  =  ( x  e.  A  |->  ( 1st `  x
) )
64, 5fnmpti 5259 . . . . 5  |-  ( x  e.  A  |->  ( 1st `  x ) )  Fn  A
7 fvelrnb 5477 . . . . 5  |-  ( ( x  e.  A  |->  ( 1st `  x ) )  Fn  A  -> 
( y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y ) )
86, 7ax-mp 5 . . . 4  |-  ( y  e.  ran  ( x  e.  A  |->  ( 1st `  x ) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y )
9 fveq2 5429 . . . . . . . 8  |-  ( x  =  z  ->  ( 1st `  x )  =  ( 1st `  z
) )
10 vex 2692 . . . . . . . . 9  |-  z  e. 
_V
11 1stexg 6073 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
1210, 11ax-mp 5 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
139, 5, 12fvmpt 5506 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  ( 1st `  z ) )
1413eqeq1d 2149 . . . . . 6  |-  ( z  e.  A  ->  (
( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  ( 1st `  z )  =  y ) )
1514rexbiia 2453 . . . . 5  |-  ( E. z  e.  A  ( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y )
1615a1i 9 . . . 4  |-  ( Rel 
A  ->  ( E. z  e.  A  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
178, 16syl5rbb 192 . . 3  |-  ( Rel 
A  ->  ( E. z  e.  A  ( 1st `  z )  =  y  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
181, 17bitrd 187 . 2  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
1918eqrdv 2138 1  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 1481   E.wrex 2418   _Vcvv 2689    |-> cmpt 3997   dom cdm 4547   ran crn 4548   Rel wrel 4552    Fn wfn 5126   ` cfv 5131   1stc1st 6044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139  df-1st 6046  df-2nd 6047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator