ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm Unicode version

Theorem reldm 6189
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Distinct variable group:    x, A

Proof of Theorem reldm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 6188 . . 3  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
2 vex 2742 . . . . . . 7  |-  x  e. 
_V
3 1stexg 6170 . . . . . . 7  |-  ( x  e.  _V  ->  ( 1st `  x )  e. 
_V )
42, 3ax-mp 5 . . . . . 6  |-  ( 1st `  x )  e.  _V
5 eqid 2177 . . . . . 6  |-  ( x  e.  A  |->  ( 1st `  x ) )  =  ( x  e.  A  |->  ( 1st `  x
) )
64, 5fnmpti 5346 . . . . 5  |-  ( x  e.  A  |->  ( 1st `  x ) )  Fn  A
7 fvelrnb 5565 . . . . 5  |-  ( ( x  e.  A  |->  ( 1st `  x ) )  Fn  A  -> 
( y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y ) )
86, 7ax-mp 5 . . . 4  |-  ( y  e.  ran  ( x  e.  A  |->  ( 1st `  x ) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y )
9 fveq2 5517 . . . . . . . 8  |-  ( x  =  z  ->  ( 1st `  x )  =  ( 1st `  z
) )
10 vex 2742 . . . . . . . . 9  |-  z  e. 
_V
11 1stexg 6170 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
1210, 11ax-mp 5 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
139, 5, 12fvmpt 5595 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  ( 1st `  z ) )
1413eqeq1d 2186 . . . . . 6  |-  ( z  e.  A  ->  (
( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  ( 1st `  z )  =  y ) )
1514rexbiia 2492 . . . . 5  |-  ( E. z  e.  A  ( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y )
1615a1i 9 . . . 4  |-  ( Rel 
A  ->  ( E. z  e.  A  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
178, 16bitr2id 193 . . 3  |-  ( Rel 
A  ->  ( E. z  e.  A  ( 1st `  z )  =  y  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
181, 17bitrd 188 . 2  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
1918eqrdv 2175 1  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   _Vcvv 2739    |-> cmpt 4066   dom cdm 4628   ran crn 4629   Rel wrel 4633    Fn wfn 5213   ` cfv 5218   1stc1st 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-1st 6143  df-2nd 6144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator