ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm Unicode version

Theorem reldm 6272
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Distinct variable group:    x, A

Proof of Theorem reldm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 6271 . . 3  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
2 vex 2775 . . . . . . 7  |-  x  e. 
_V
3 1stexg 6253 . . . . . . 7  |-  ( x  e.  _V  ->  ( 1st `  x )  e. 
_V )
42, 3ax-mp 5 . . . . . 6  |-  ( 1st `  x )  e.  _V
5 eqid 2205 . . . . . 6  |-  ( x  e.  A  |->  ( 1st `  x ) )  =  ( x  e.  A  |->  ( 1st `  x
) )
64, 5fnmpti 5404 . . . . 5  |-  ( x  e.  A  |->  ( 1st `  x ) )  Fn  A
7 fvelrnb 5626 . . . . 5  |-  ( ( x  e.  A  |->  ( 1st `  x ) )  Fn  A  -> 
( y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y ) )
86, 7ax-mp 5 . . . 4  |-  ( y  e.  ran  ( x  e.  A  |->  ( 1st `  x ) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y )
9 fveq2 5576 . . . . . . . 8  |-  ( x  =  z  ->  ( 1st `  x )  =  ( 1st `  z
) )
10 vex 2775 . . . . . . . . 9  |-  z  e. 
_V
11 1stexg 6253 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
1210, 11ax-mp 5 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
139, 5, 12fvmpt 5656 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  ( 1st `  z ) )
1413eqeq1d 2214 . . . . . 6  |-  ( z  e.  A  ->  (
( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  ( 1st `  z )  =  y ) )
1514rexbiia 2521 . . . . 5  |-  ( E. z  e.  A  ( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y )
1615a1i 9 . . . 4  |-  ( Rel 
A  ->  ( E. z  e.  A  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
178, 16bitr2id 193 . . 3  |-  ( Rel 
A  ->  ( E. z  e.  A  ( 1st `  z )  =  y  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
181, 17bitrd 188 . 2  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
1918eqrdv 2203 1  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   _Vcvv 2772    |-> cmpt 4105   dom cdm 4675   ran crn 4676   Rel wrel 4680    Fn wfn 5266   ` cfv 5271   1stc1st 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-1st 6226  df-2nd 6227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator