| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-2inf | Unicode version | ||
| Description: Two formulations of the axiom of infinity (see ax-infvn 15587 and bj-omex 15588) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-2inf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . . 4
| |
| 2 | bj-om 15583 |
. . . 4
| |
| 3 | 1, 2 | mpbii 148 |
. . 3
|
| 4 | bj-indeq 15575 |
. . . . 5
| |
| 5 | sseq1 3206 |
. . . . . . 7
| |
| 6 | 5 | imbi2d 230 |
. . . . . 6
|
| 7 | 6 | albidv 1838 |
. . . . 5
|
| 8 | 4, 7 | anbi12d 473 |
. . . 4
|
| 9 | 8 | spcegv 2852 |
. . 3
|
| 10 | 3, 9 | mpd 13 |
. 2
|
| 11 | vex 2766 |
. . . . . 6
| |
| 12 | bj-om 15583 |
. . . . . 6
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . 5
|
| 14 | 13 | biimpri 133 |
. . . 4
|
| 15 | 14 | eximi 1614 |
. . 3
|
| 16 | isset 2769 |
. . 3
| |
| 17 | 15, 16 | sylibr 134 |
. 2
|
| 18 | 10, 17 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdor 15462 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-bdc 15487 df-bj-ind 15573 |
| This theorem is referenced by: bj-omex 15588 |
| Copyright terms: Public domain | W3C validator |