| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-2inf | Unicode version | ||
| Description: Two formulations of the axiom of infinity (see ax-infvn 15877 and bj-omex 15878) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-2inf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . . 4
| |
| 2 | bj-om 15873 |
. . . 4
| |
| 3 | 1, 2 | mpbii 148 |
. . 3
|
| 4 | bj-indeq 15865 |
. . . . 5
| |
| 5 | sseq1 3216 |
. . . . . . 7
| |
| 6 | 5 | imbi2d 230 |
. . . . . 6
|
| 7 | 6 | albidv 1847 |
. . . . 5
|
| 8 | 4, 7 | anbi12d 473 |
. . . 4
|
| 9 | 8 | spcegv 2861 |
. . 3
|
| 10 | 3, 9 | mpd 13 |
. 2
|
| 11 | vex 2775 |
. . . . . 6
| |
| 12 | bj-om 15873 |
. . . . . 6
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . 5
|
| 14 | 13 | biimpri 133 |
. . . 4
|
| 15 | 14 | eximi 1623 |
. . 3
|
| 16 | isset 2778 |
. . 3
| |
| 17 | 15, 16 | sylibr 134 |
. 2
|
| 18 | 10, 17 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4170 ax-pr 4253 ax-un 4480 ax-bd0 15749 ax-bdor 15752 ax-bdex 15755 ax-bdeq 15756 ax-bdel 15757 ax-bdsb 15758 ax-bdsep 15820 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 df-bdc 15777 df-bj-ind 15863 |
| This theorem is referenced by: bj-omex 15878 |
| Copyright terms: Public domain | W3C validator |