| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-2inf | Unicode version | ||
| Description: Two formulations of the axiom of infinity (see ax-infvn 16304 and bj-omex 16305) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-2inf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . 4
| |
| 2 | bj-om 16300 |
. . . 4
| |
| 3 | 1, 2 | mpbii 148 |
. . 3
|
| 4 | bj-indeq 16292 |
. . . . 5
| |
| 5 | sseq1 3247 |
. . . . . . 7
| |
| 6 | 5 | imbi2d 230 |
. . . . . 6
|
| 7 | 6 | albidv 1870 |
. . . . 5
|
| 8 | 4, 7 | anbi12d 473 |
. . . 4
|
| 9 | 8 | spcegv 2891 |
. . 3
|
| 10 | 3, 9 | mpd 13 |
. 2
|
| 11 | vex 2802 |
. . . . . 6
| |
| 12 | bj-om 16300 |
. . . . . 6
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . 5
|
| 14 | 13 | biimpri 133 |
. . . 4
|
| 15 | 14 | eximi 1646 |
. . 3
|
| 16 | isset 2806 |
. . 3
| |
| 17 | 15, 16 | sylibr 134 |
. 2
|
| 18 | 10, 17 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-omex 16305 |
| Copyright terms: Public domain | W3C validator |