Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-2inf | Unicode version |
Description: Two formulations of the axiom of infinity (see ax-infvn 14262 and bj-omex 14263) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-2inf | Ind Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . . . 4 | |
2 | bj-om 14258 | . . . 4 Ind Ind | |
3 | 1, 2 | mpbii 148 | . . 3 Ind Ind |
4 | bj-indeq 14250 | . . . . 5 Ind Ind | |
5 | sseq1 3176 | . . . . . . 7 | |
6 | 5 | imbi2d 230 | . . . . . 6 Ind Ind |
7 | 6 | albidv 1822 | . . . . 5 Ind Ind |
8 | 4, 7 | anbi12d 473 | . . . 4 Ind Ind Ind Ind |
9 | 8 | spcegv 2823 | . . 3 Ind Ind Ind Ind |
10 | 3, 9 | mpd 13 | . 2 Ind Ind |
11 | vex 2738 | . . . . . 6 | |
12 | bj-om 14258 | . . . . . 6 Ind Ind | |
13 | 11, 12 | ax-mp 5 | . . . . 5 Ind Ind |
14 | 13 | biimpri 133 | . . . 4 Ind Ind |
15 | 14 | eximi 1598 | . . 3 Ind Ind |
16 | isset 2741 | . . 3 | |
17 | 15, 16 | sylibr 134 | . 2 Ind Ind |
18 | 10, 17 | impbii 126 | 1 Ind Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wal 1351 wceq 1353 wex 1490 wcel 2146 cvv 2735 wss 3127 com 4583 Ind wind 14247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-nul 4124 ax-pr 4203 ax-un 4427 ax-bd0 14134 ax-bdor 14137 ax-bdex 14140 ax-bdeq 14141 ax-bdel 14142 ax-bdsb 14143 ax-bdsep 14205 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-suc 4365 df-iom 4584 df-bdc 14162 df-bj-ind 14248 |
This theorem is referenced by: bj-omex 14263 |
Copyright terms: Public domain | W3C validator |