Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-2inf Unicode version

Theorem bj-2inf 15168
Description: Two formulations of the axiom of infinity (see ax-infvn 15171 and bj-omex 15172) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-2inf  |-  ( om  e.  _V  <->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
Distinct variable group:    x, y

Proof of Theorem bj-2inf
StepHypRef Expression
1 eqid 2189 . . . 4  |-  om  =  om
2 bj-om 15167 . . . 4  |-  ( om  e.  _V  ->  ( om  =  om  <->  (Ind  om  /\ 
A. y (Ind  y  ->  om  C_  y ) ) ) )
31, 2mpbii 148 . . 3  |-  ( om  e.  _V  ->  (Ind  om 
/\  A. y (Ind  y  ->  om  C_  y ) ) )
4 bj-indeq 15159 . . . . 5  |-  ( x  =  om  ->  (Ind  x 
<-> Ind 
om ) )
5 sseq1 3193 . . . . . . 7  |-  ( x  =  om  ->  (
x  C_  y  <->  om  C_  y
) )
65imbi2d 230 . . . . . 6  |-  ( x  =  om  ->  (
(Ind  y  ->  x  C_  y )  <->  (Ind  y  ->  om  C_  y )
) )
76albidv 1835 . . . . 5  |-  ( x  =  om  ->  ( A. y (Ind  y  ->  x  C_  y )  <->  A. y
(Ind  y  ->  om  C_  y
) ) )
84, 7anbi12d 473 . . . 4  |-  ( x  =  om  ->  (
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) )  <-> 
(Ind  om  /\  A. y
(Ind  y  ->  om  C_  y
) ) ) )
98spcegv 2840 . . 3  |-  ( om  e.  _V  ->  (
(Ind  om  /\  A. y
(Ind  y  ->  om  C_  y
) )  ->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) ) )
103, 9mpd 13 . 2  |-  ( om  e.  _V  ->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
11 vex 2755 . . . . . 6  |-  x  e. 
_V
12 bj-om 15167 . . . . . 6  |-  ( x  e.  _V  ->  (
x  =  om  <->  (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) ) ) )
1311, 12ax-mp 5 . . . . 5  |-  ( x  =  om  <->  (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) ) )
1413biimpri 133 . . . 4  |-  ( (Ind  x  /\  A. y
(Ind  y  ->  x  C_  y ) )  ->  x  =  om )
1514eximi 1611 . . 3  |-  ( E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y ) )  ->  E. x  x  =  om )
16 isset 2758 . . 3  |-  ( om  e.  _V  <->  E. x  x  =  om )
1715, 16sylibr 134 . 2  |-  ( E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y ) )  ->  om  e.  _V )
1810, 17impbii 126 1  |-  ( om  e.  _V  <->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2160   _Vcvv 2752    C_ wss 3144   omcom 4607  Ind wind 15156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-nul 4144  ax-pr 4227  ax-un 4451  ax-bd0 15043  ax-bdor 15046  ax-bdex 15049  ax-bdeq 15050  ax-bdel 15051  ax-bdsb 15052  ax-bdsep 15114
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-sn 3613  df-pr 3614  df-uni 3825  df-int 3860  df-suc 4389  df-iom 4608  df-bdc 15071  df-bj-ind 15157
This theorem is referenced by:  bj-omex  15172
  Copyright terms: Public domain W3C validator