Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-2inf Unicode version

Theorem bj-2inf 11490
Description: Two formulations of the axiom of infinity (see ax-infvn 11493 and bj-omex 11494) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-2inf  |-  ( om  e.  _V  <->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
Distinct variable group:    x, y

Proof of Theorem bj-2inf
StepHypRef Expression
1 eqid 2088 . . . 4  |-  om  =  om
2 bj-om 11489 . . . 4  |-  ( om  e.  _V  ->  ( om  =  om  <->  (Ind  om  /\ 
A. y (Ind  y  ->  om  C_  y ) ) ) )
31, 2mpbii 146 . . 3  |-  ( om  e.  _V  ->  (Ind  om 
/\  A. y (Ind  y  ->  om  C_  y ) ) )
4 bj-indeq 11481 . . . . 5  |-  ( x  =  om  ->  (Ind  x 
<-> Ind 
om ) )
5 sseq1 3045 . . . . . . 7  |-  ( x  =  om  ->  (
x  C_  y  <->  om  C_  y
) )
65imbi2d 228 . . . . . 6  |-  ( x  =  om  ->  (
(Ind  y  ->  x  C_  y )  <->  (Ind  y  ->  om  C_  y )
) )
76albidv 1752 . . . . 5  |-  ( x  =  om  ->  ( A. y (Ind  y  ->  x  C_  y )  <->  A. y
(Ind  y  ->  om  C_  y
) ) )
84, 7anbi12d 457 . . . 4  |-  ( x  =  om  ->  (
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) )  <-> 
(Ind  om  /\  A. y
(Ind  y  ->  om  C_  y
) ) ) )
98spcegv 2707 . . 3  |-  ( om  e.  _V  ->  (
(Ind  om  /\  A. y
(Ind  y  ->  om  C_  y
) )  ->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) ) )
103, 9mpd 13 . 2  |-  ( om  e.  _V  ->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
11 vex 2622 . . . . . 6  |-  x  e. 
_V
12 bj-om 11489 . . . . . 6  |-  ( x  e.  _V  ->  (
x  =  om  <->  (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) ) ) )
1311, 12ax-mp 7 . . . . 5  |-  ( x  =  om  <->  (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) ) )
1413biimpri 131 . . . 4  |-  ( (Ind  x  /\  A. y
(Ind  y  ->  x  C_  y ) )  ->  x  =  om )
1514eximi 1536 . . 3  |-  ( E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y ) )  ->  E. x  x  =  om )
16 isset 2625 . . 3  |-  ( om  e.  _V  <->  E. x  x  =  om )
1715, 16sylibr 132 . 2  |-  ( E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y ) )  ->  om  e.  _V )
1810, 17impbii 124 1  |-  ( om  e.  _V  <->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   _Vcvv 2619    C_ wss 2997   omcom 4395  Ind wind 11478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-nul 3957  ax-pr 4027  ax-un 4251  ax-bd0 11361  ax-bdor 11364  ax-bdex 11367  ax-bdeq 11368  ax-bdel 11369  ax-bdsb 11370  ax-bdsep 11432
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-sn 3447  df-pr 3448  df-uni 3649  df-int 3684  df-suc 4189  df-iom 4396  df-bdc 11389  df-bj-ind 11479
This theorem is referenced by:  bj-omex  11494
  Copyright terms: Public domain W3C validator