Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-2inf Unicode version

Theorem bj-2inf 16073
Description: Two formulations of the axiom of infinity (see ax-infvn 16076 and bj-omex 16077) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-2inf  |-  ( om  e.  _V  <->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
Distinct variable group:    x, y

Proof of Theorem bj-2inf
StepHypRef Expression
1 eqid 2207 . . . 4  |-  om  =  om
2 bj-om 16072 . . . 4  |-  ( om  e.  _V  ->  ( om  =  om  <->  (Ind  om  /\ 
A. y (Ind  y  ->  om  C_  y ) ) ) )
31, 2mpbii 148 . . 3  |-  ( om  e.  _V  ->  (Ind  om 
/\  A. y (Ind  y  ->  om  C_  y ) ) )
4 bj-indeq 16064 . . . . 5  |-  ( x  =  om  ->  (Ind  x 
<-> Ind 
om ) )
5 sseq1 3224 . . . . . . 7  |-  ( x  =  om  ->  (
x  C_  y  <->  om  C_  y
) )
65imbi2d 230 . . . . . 6  |-  ( x  =  om  ->  (
(Ind  y  ->  x  C_  y )  <->  (Ind  y  ->  om  C_  y )
) )
76albidv 1848 . . . . 5  |-  ( x  =  om  ->  ( A. y (Ind  y  ->  x  C_  y )  <->  A. y
(Ind  y  ->  om  C_  y
) ) )
84, 7anbi12d 473 . . . 4  |-  ( x  =  om  ->  (
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) )  <-> 
(Ind  om  /\  A. y
(Ind  y  ->  om  C_  y
) ) ) )
98spcegv 2868 . . 3  |-  ( om  e.  _V  ->  (
(Ind  om  /\  A. y
(Ind  y  ->  om  C_  y
) )  ->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) ) )
103, 9mpd 13 . 2  |-  ( om  e.  _V  ->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
11 vex 2779 . . . . . 6  |-  x  e. 
_V
12 bj-om 16072 . . . . . 6  |-  ( x  e.  _V  ->  (
x  =  om  <->  (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) ) ) )
1311, 12ax-mp 5 . . . . 5  |-  ( x  =  om  <->  (Ind  x  /\  A. y (Ind  y  ->  x  C_  y
) ) )
1413biimpri 133 . . . 4  |-  ( (Ind  x  /\  A. y
(Ind  y  ->  x  C_  y ) )  ->  x  =  om )
1514eximi 1624 . . 3  |-  ( E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y ) )  ->  E. x  x  =  om )
16 isset 2783 . . 3  |-  ( om  e.  _V  <->  E. x  x  =  om )
1715, 16sylibr 134 . 2  |-  ( E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y ) )  ->  om  e.  _V )
1810, 17impbii 126 1  |-  ( om  e.  _V  <->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776    C_ wss 3174   omcom 4656  Ind wind 16061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdor 15951  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by:  bj-omex  16077
  Copyright terms: Public domain W3C validator