Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indsuc Unicode version

Theorem bj-indsuc 16063
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indsuc  |-  (Ind  A  ->  ( B  e.  A  ->  suc  B  e.  A
) )

Proof of Theorem bj-indsuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 16062 . . 3  |-  (Ind  A  <->  (
(/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
)
21simprbi 275 . 2  |-  (Ind  A  ->  A. x  e.  A  suc  x  e.  A )
3 suceq 4467 . . . 4  |-  ( x  =  B  ->  suc  x  =  suc  B )
43eleq1d 2276 . . 3  |-  ( x  =  B  ->  ( suc  x  e.  A  <->  suc  B  e.  A ) )
54rspcv 2880 . 2  |-  ( B  e.  A  ->  ( A. x  e.  A  suc  x  e.  A  ->  suc  B  e.  A ) )
62, 5syl5com 29 1  |-  (Ind  A  ->  ( B  e.  A  ->  suc  B  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   A.wral 2486   (/)c0 3468   suc csuc 4430  Ind wind 16061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-sn 3649  df-suc 4436  df-bj-ind 16062
This theorem is referenced by:  bj-indint  16066  bj-peano2  16074  bj-inf2vnlem2  16106
  Copyright terms: Public domain W3C validator