Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indsuc Unicode version

Theorem bj-indsuc 15901
Description: A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indsuc  |-  (Ind  A  ->  ( B  e.  A  ->  suc  B  e.  A
) )

Proof of Theorem bj-indsuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 15900 . . 3  |-  (Ind  A  <->  (
(/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
)
21simprbi 275 . 2  |-  (Ind  A  ->  A. x  e.  A  suc  x  e.  A )
3 suceq 4450 . . . 4  |-  ( x  =  B  ->  suc  x  =  suc  B )
43eleq1d 2274 . . 3  |-  ( x  =  B  ->  ( suc  x  e.  A  <->  suc  B  e.  A ) )
54rspcv 2873 . 2  |-  ( B  e.  A  ->  ( A. x  e.  A  suc  x  e.  A  ->  suc  B  e.  A ) )
62, 5syl5com 29 1  |-  (Ind  A  ->  ( B  e.  A  ->  suc  B  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   A.wral 2484   (/)c0 3460   suc csuc 4413  Ind wind 15899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-sn 3639  df-suc 4419  df-bj-ind 15900
This theorem is referenced by:  bj-indint  15904  bj-peano2  15912  bj-inf2vnlem2  15944
  Copyright terms: Public domain W3C validator