Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om Unicode version

Theorem bj-om 14774
Description: A set is equal to  om if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 14771 . . . 4  |- Ind  om
2 bj-indeq 14766 . . . 4  |-  ( A  =  om  ->  (Ind  A 
<-> Ind 
om ) )
31, 2mpbiri 168 . . 3  |-  ( A  =  om  -> Ind  A )
4 vex 2742 . . . . . 6  |-  x  e. 
_V
5 bj-omssind 14772 . . . . . 6  |-  ( x  e.  _V  ->  (Ind  x  ->  om  C_  x ) )
64, 5ax-mp 5 . . . . 5  |-  (Ind  x  ->  om  C_  x )
7 sseq1 3180 . . . . 5  |-  ( A  =  om  ->  ( A  C_  x  <->  om  C_  x
) )
86, 7imbitrrid 156 . . . 4  |-  ( A  =  om  ->  (Ind  x  ->  A  C_  x
) )
98alrimiv 1874 . . 3  |-  ( A  =  om  ->  A. x
(Ind  x  ->  A  C_  x ) )
103, 9jca 306 . 2  |-  ( A  =  om  ->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x
) ) )
11 bj-ssom 14773 . . . . . . 7  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
1211biimpi 120 . . . . . 6  |-  ( A. x (Ind  x  ->  A 
C_  x )  ->  A  C_  om )
1312adantl 277 . . . . 5  |-  ( (Ind  A  /\  A. x
(Ind  x  ->  A  C_  x ) )  ->  A  C_  om )
1413a1i 9 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  C_  om )
)
15 bj-omssind 14772 . . . . 5  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )
1615adantrd 279 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  om  C_  A ) )
1714, 16jcad 307 . . 3  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  ( A  C_  om 
/\  om  C_  A ) ) )
18 eqss 3172 . . 3  |-  ( A  =  om  <->  ( A  C_ 
om  /\  om  C_  A
) )
1917, 18imbitrrdi 162 . 2  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  =  om ) )
2010, 19impbid2 143 1  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   omcom 4591  Ind wind 14763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14650  ax-bdor 14653  ax-bdex 14656  ax-bdeq 14657  ax-bdel 14658  ax-bdsb 14659  ax-bdsep 14721
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592  df-bdc 14678  df-bj-ind 14764
This theorem is referenced by:  bj-2inf  14775  bj-inf2vn  14811  bj-inf2vn2  14812
  Copyright terms: Public domain W3C validator