| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-om | Unicode version | ||
| Description: A set is equal to |
| Ref | Expression |
|---|---|
| bj-om |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-omind 16297 |
. . . 4
| |
| 2 | bj-indeq 16292 |
. . . 4
| |
| 3 | 1, 2 | mpbiri 168 |
. . 3
|
| 4 | vex 2802 |
. . . . . 6
| |
| 5 | bj-omssind 16298 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | sseq1 3247 |
. . . . 5
| |
| 8 | 6, 7 | imbitrrid 156 |
. . . 4
|
| 9 | 8 | alrimiv 1920 |
. . 3
|
| 10 | 3, 9 | jca 306 |
. 2
|
| 11 | bj-ssom 16299 |
. . . . . . 7
| |
| 12 | 11 | biimpi 120 |
. . . . . 6
|
| 13 | 12 | adantl 277 |
. . . . 5
|
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | bj-omssind 16298 |
. . . . 5
| |
| 16 | 15 | adantrd 279 |
. . . 4
|
| 17 | 14, 16 | jcad 307 |
. . 3
|
| 18 | eqss 3239 |
. . 3
| |
| 19 | 17, 18 | imbitrrdi 162 |
. 2
|
| 20 | 10, 19 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-2inf 16301 bj-inf2vn 16337 bj-inf2vn2 16338 |
| Copyright terms: Public domain | W3C validator |