Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om Unicode version

Theorem bj-om 15429
Description: A set is equal to  om if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 15426 . . . 4  |- Ind  om
2 bj-indeq 15421 . . . 4  |-  ( A  =  om  ->  (Ind  A 
<-> Ind 
om ) )
31, 2mpbiri 168 . . 3  |-  ( A  =  om  -> Ind  A )
4 vex 2763 . . . . . 6  |-  x  e. 
_V
5 bj-omssind 15427 . . . . . 6  |-  ( x  e.  _V  ->  (Ind  x  ->  om  C_  x ) )
64, 5ax-mp 5 . . . . 5  |-  (Ind  x  ->  om  C_  x )
7 sseq1 3202 . . . . 5  |-  ( A  =  om  ->  ( A  C_  x  <->  om  C_  x
) )
86, 7imbitrrid 156 . . . 4  |-  ( A  =  om  ->  (Ind  x  ->  A  C_  x
) )
98alrimiv 1885 . . 3  |-  ( A  =  om  ->  A. x
(Ind  x  ->  A  C_  x ) )
103, 9jca 306 . 2  |-  ( A  =  om  ->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x
) ) )
11 bj-ssom 15428 . . . . . . 7  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
1211biimpi 120 . . . . . 6  |-  ( A. x (Ind  x  ->  A 
C_  x )  ->  A  C_  om )
1312adantl 277 . . . . 5  |-  ( (Ind  A  /\  A. x
(Ind  x  ->  A  C_  x ) )  ->  A  C_  om )
1413a1i 9 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  C_  om )
)
15 bj-omssind 15427 . . . . 5  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )
1615adantrd 279 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  om  C_  A ) )
1714, 16jcad 307 . . 3  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  ( A  C_  om 
/\  om  C_  A ) ) )
18 eqss 3194 . . 3  |-  ( A  =  om  <->  ( A  C_ 
om  /\  om  C_  A
) )
1917, 18imbitrrdi 162 . 2  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  =  om ) )
2010, 19impbid2 143 1  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   omcom 4622  Ind wind 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdor 15308  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by:  bj-2inf  15430  bj-inf2vn  15466  bj-inf2vn2  15467
  Copyright terms: Public domain W3C validator