Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om Unicode version

Theorem bj-om 16300
Description: A set is equal to  om if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 16297 . . . 4  |- Ind  om
2 bj-indeq 16292 . . . 4  |-  ( A  =  om  ->  (Ind  A 
<-> Ind 
om ) )
31, 2mpbiri 168 . . 3  |-  ( A  =  om  -> Ind  A )
4 vex 2802 . . . . . 6  |-  x  e. 
_V
5 bj-omssind 16298 . . . . . 6  |-  ( x  e.  _V  ->  (Ind  x  ->  om  C_  x ) )
64, 5ax-mp 5 . . . . 5  |-  (Ind  x  ->  om  C_  x )
7 sseq1 3247 . . . . 5  |-  ( A  =  om  ->  ( A  C_  x  <->  om  C_  x
) )
86, 7imbitrrid 156 . . . 4  |-  ( A  =  om  ->  (Ind  x  ->  A  C_  x
) )
98alrimiv 1920 . . 3  |-  ( A  =  om  ->  A. x
(Ind  x  ->  A  C_  x ) )
103, 9jca 306 . 2  |-  ( A  =  om  ->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x
) ) )
11 bj-ssom 16299 . . . . . . 7  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
1211biimpi 120 . . . . . 6  |-  ( A. x (Ind  x  ->  A 
C_  x )  ->  A  C_  om )
1312adantl 277 . . . . 5  |-  ( (Ind  A  /\  A. x
(Ind  x  ->  A  C_  x ) )  ->  A  C_  om )
1413a1i 9 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  C_  om )
)
15 bj-omssind 16298 . . . . 5  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )
1615adantrd 279 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  om  C_  A ) )
1714, 16jcad 307 . . 3  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  ( A  C_  om 
/\  om  C_  A ) ) )
18 eqss 3239 . . 3  |-  ( A  =  om  <->  ( A  C_ 
om  /\  om  C_  A
) )
1917, 18imbitrrdi 162 . 2  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  =  om ) )
2010, 19impbid2 143 1  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   omcom 4682  Ind wind 16289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4210  ax-pr 4293  ax-un 4524  ax-bd0 16176  ax-bdor 16179  ax-bdex 16182  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-suc 4462  df-iom 4683  df-bdc 16204  df-bj-ind 16290
This theorem is referenced by:  bj-2inf  16301  bj-inf2vn  16337  bj-inf2vn2  16338
  Copyright terms: Public domain W3C validator