| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-om | Unicode version | ||
| Description: A set is equal to |
| Ref | Expression |
|---|---|
| bj-om |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-omind 16069 |
. . . 4
| |
| 2 | bj-indeq 16064 |
. . . 4
| |
| 3 | 1, 2 | mpbiri 168 |
. . 3
|
| 4 | vex 2779 |
. . . . . 6
| |
| 5 | bj-omssind 16070 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | sseq1 3224 |
. . . . 5
| |
| 8 | 6, 7 | imbitrrid 156 |
. . . 4
|
| 9 | 8 | alrimiv 1898 |
. . 3
|
| 10 | 3, 9 | jca 306 |
. 2
|
| 11 | bj-ssom 16071 |
. . . . . . 7
| |
| 12 | 11 | biimpi 120 |
. . . . . 6
|
| 13 | 12 | adantl 277 |
. . . . 5
|
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | bj-omssind 16070 |
. . . . 5
| |
| 16 | 15 | adantrd 279 |
. . . 4
|
| 17 | 14, 16 | jcad 307 |
. . 3
|
| 18 | eqss 3216 |
. . 3
| |
| 19 | 17, 18 | imbitrrdi 162 |
. 2
|
| 20 | 10, 19 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-nul 4186 ax-pr 4269 ax-un 4498 ax-bd0 15948 ax-bdor 15951 ax-bdex 15954 ax-bdeq 15955 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-bdc 15976 df-bj-ind 16062 |
| This theorem is referenced by: bj-2inf 16073 bj-inf2vn 16109 bj-inf2vn2 16110 |
| Copyright terms: Public domain | W3C validator |