Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-om | Unicode version |
Description: A set is equal to if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-om | Ind Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omind 13816 | . . . 4 Ind | |
2 | bj-indeq 13811 | . . . 4 Ind Ind | |
3 | 1, 2 | mpbiri 167 | . . 3 Ind |
4 | vex 2729 | . . . . . 6 | |
5 | bj-omssind 13817 | . . . . . 6 Ind | |
6 | 4, 5 | ax-mp 5 | . . . . 5 Ind |
7 | sseq1 3165 | . . . . 5 | |
8 | 6, 7 | syl5ibr 155 | . . . 4 Ind |
9 | 8 | alrimiv 1862 | . . 3 Ind |
10 | 3, 9 | jca 304 | . 2 Ind Ind |
11 | bj-ssom 13818 | . . . . . . 7 Ind | |
12 | 11 | biimpi 119 | . . . . . 6 Ind |
13 | 12 | adantl 275 | . . . . 5 Ind Ind |
14 | 13 | a1i 9 | . . . 4 Ind Ind |
15 | bj-omssind 13817 | . . . . 5 Ind | |
16 | 15 | adantrd 277 | . . . 4 Ind Ind |
17 | 14, 16 | jcad 305 | . . 3 Ind Ind |
18 | eqss 3157 | . . 3 | |
19 | 17, 18 | syl6ibr 161 | . 2 Ind Ind |
20 | 10, 19 | impbid2 142 | 1 Ind Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 cvv 2726 wss 3116 com 4567 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-2inf 13820 bj-inf2vn 13856 bj-inf2vn2 13857 |
Copyright terms: Public domain | W3C validator |