Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om Unicode version

Theorem bj-om 13306
Description: A set is equal to  om if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 13303 . . . 4  |- Ind  om
2 bj-indeq 13298 . . . 4  |-  ( A  =  om  ->  (Ind  A 
<-> Ind 
om ) )
31, 2mpbiri 167 . . 3  |-  ( A  =  om  -> Ind  A )
4 vex 2692 . . . . . 6  |-  x  e. 
_V
5 bj-omssind 13304 . . . . . 6  |-  ( x  e.  _V  ->  (Ind  x  ->  om  C_  x ) )
64, 5ax-mp 5 . . . . 5  |-  (Ind  x  ->  om  C_  x )
7 sseq1 3125 . . . . 5  |-  ( A  =  om  ->  ( A  C_  x  <->  om  C_  x
) )
86, 7syl5ibr 155 . . . 4  |-  ( A  =  om  ->  (Ind  x  ->  A  C_  x
) )
98alrimiv 1847 . . 3  |-  ( A  =  om  ->  A. x
(Ind  x  ->  A  C_  x ) )
103, 9jca 304 . 2  |-  ( A  =  om  ->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x
) ) )
11 bj-ssom 13305 . . . . . . 7  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
1211biimpi 119 . . . . . 6  |-  ( A. x (Ind  x  ->  A 
C_  x )  ->  A  C_  om )
1312adantl 275 . . . . 5  |-  ( (Ind  A  /\  A. x
(Ind  x  ->  A  C_  x ) )  ->  A  C_  om )
1413a1i 9 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  C_  om )
)
15 bj-omssind 13304 . . . . 5  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )
1615adantrd 277 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  om  C_  A ) )
1714, 16jcad 305 . . 3  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  ( A  C_  om 
/\  om  C_  A ) ) )
18 eqss 3117 . . 3  |-  ( A  =  om  <->  ( A  C_ 
om  /\  om  C_  A
) )
1917, 18syl6ibr 161 . 2  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  =  om ) )
2010, 19impbid2 142 1  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332    e. wcel 1481   _Vcvv 2689    C_ wss 3076   omcom 4512  Ind wind 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-nul 4062  ax-pr 4139  ax-un 4363  ax-bd0 13182  ax-bdor 13185  ax-bdex 13188  ax-bdeq 13189  ax-bdel 13190  ax-bdsb 13191  ax-bdsep 13253
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-suc 4301  df-iom 4513  df-bdc 13210  df-bj-ind 13296
This theorem is referenced by:  bj-2inf  13307  bj-inf2vn  13343  bj-inf2vn2  13344
  Copyright terms: Public domain W3C validator