Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om Unicode version

Theorem bj-om 15583
Description: A set is equal to  om if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 15580 . . . 4  |- Ind  om
2 bj-indeq 15575 . . . 4  |-  ( A  =  om  ->  (Ind  A 
<-> Ind 
om ) )
31, 2mpbiri 168 . . 3  |-  ( A  =  om  -> Ind  A )
4 vex 2766 . . . . . 6  |-  x  e. 
_V
5 bj-omssind 15581 . . . . . 6  |-  ( x  e.  _V  ->  (Ind  x  ->  om  C_  x ) )
64, 5ax-mp 5 . . . . 5  |-  (Ind  x  ->  om  C_  x )
7 sseq1 3206 . . . . 5  |-  ( A  =  om  ->  ( A  C_  x  <->  om  C_  x
) )
86, 7imbitrrid 156 . . . 4  |-  ( A  =  om  ->  (Ind  x  ->  A  C_  x
) )
98alrimiv 1888 . . 3  |-  ( A  =  om  ->  A. x
(Ind  x  ->  A  C_  x ) )
103, 9jca 306 . 2  |-  ( A  =  om  ->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x
) ) )
11 bj-ssom 15582 . . . . . . 7  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
1211biimpi 120 . . . . . 6  |-  ( A. x (Ind  x  ->  A 
C_  x )  ->  A  C_  om )
1312adantl 277 . . . . 5  |-  ( (Ind  A  /\  A. x
(Ind  x  ->  A  C_  x ) )  ->  A  C_  om )
1413a1i 9 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  C_  om )
)
15 bj-omssind 15581 . . . . 5  |-  ( A  e.  V  ->  (Ind  A  ->  om  C_  A ) )
1615adantrd 279 . . . 4  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  om  C_  A ) )
1714, 16jcad 307 . . 3  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  ( A  C_  om 
/\  om  C_  A ) ) )
18 eqss 3198 . . 3  |-  ( A  =  om  <->  ( A  C_ 
om  /\  om  C_  A
) )
1917, 18imbitrrdi 162 . 2  |-  ( A  e.  V  ->  (
(Ind  A  /\  A. x (Ind  x  ->  A 
C_  x ) )  ->  A  =  om ) )
2010, 19impbid2 143 1  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   omcom 4626  Ind wind 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4159  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdor 15462  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627  df-bdc 15487  df-bj-ind 15573
This theorem is referenced by:  bj-2inf  15584  bj-inf2vn  15620  bj-inf2vn2  15621
  Copyright terms: Public domain W3C validator