Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-peano2 Unicode version

Theorem bj-peano2 15044
Description: Constructive proof of peano2 4606. Temporary note: another possibility is to simply replace sucexg 4509 with bj-sucexg 15027 in the proof of peano2 4606. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-peano2  |-  ( A  e.  om  ->  suc  A  e.  om )

Proof of Theorem bj-peano2
StepHypRef Expression
1 bj-omind 15039 . 2  |- Ind  om
2 bj-indsuc 15033 . 2  |-  (Ind  om  ->  ( A  e.  om  ->  suc  A  e.  om ) )
31, 2ax-mp 5 1  |-  ( A  e.  om  ->  suc  A  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158   suc csuc 4377   omcom 4601  Ind wind 15031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-nul 4141  ax-pr 4221  ax-un 4445  ax-bd0 14918  ax-bdor 14921  ax-bdex 14924  ax-bdeq 14925  ax-bdel 14926  ax-bdsb 14927  ax-bdsep 14989
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-nul 3435  df-sn 3610  df-pr 3611  df-uni 3822  df-int 3857  df-suc 4383  df-iom 4602  df-bdc 14946  df-bj-ind 15032
This theorem is referenced by:  bj-nn0suc  15069  bj-nn0sucALT  15083
  Copyright terms: Public domain W3C validator