Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem4 | Unicode version |
Description: Lemma for bj-inf2vn2 13857. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vnlem4 | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem2 13853 | . . 3 Ind | |
2 | nfv 1516 | . . . 4 | |
3 | nfv 1516 | . . . 4 | |
4 | nfv 1516 | . . . 4 | |
5 | nfv 1516 | . . . 4 | |
6 | eleq1 2229 | . . . . . 6 | |
7 | eleq1 2229 | . . . . . 6 | |
8 | 6, 7 | imbi12d 233 | . . . . 5 |
9 | 8 | biimpd 143 | . . . 4 |
10 | eleq1 2229 | . . . . . 6 | |
11 | eleq1 2229 | . . . . . 6 | |
12 | 10, 11 | imbi12d 233 | . . . . 5 |
13 | 12 | biimprd 157 | . . . 4 |
14 | 2, 3, 4, 5, 9, 13 | setindis 13849 | . . 3 |
15 | 1, 14 | syl6 33 | . 2 Ind |
16 | dfss2 3131 | . 2 | |
17 | 15, 16 | syl6ibr 161 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wal 1341 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 c0 3409 csuc 4343 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-suc 4349 df-bj-ind 13809 |
This theorem is referenced by: bj-inf2vn2 13857 |
Copyright terms: Public domain | W3C validator |