Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem4 | Unicode version |
Description: Lemma for bj-inf2vn2 13509. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vnlem4 | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem2 13505 | . . 3 Ind | |
2 | nfv 1508 | . . . 4 | |
3 | nfv 1508 | . . . 4 | |
4 | nfv 1508 | . . . 4 | |
5 | nfv 1508 | . . . 4 | |
6 | eleq1 2220 | . . . . . 6 | |
7 | eleq1 2220 | . . . . . 6 | |
8 | 6, 7 | imbi12d 233 | . . . . 5 |
9 | 8 | biimpd 143 | . . . 4 |
10 | eleq1 2220 | . . . . . 6 | |
11 | eleq1 2220 | . . . . . 6 | |
12 | 10, 11 | imbi12d 233 | . . . . 5 |
13 | 12 | biimprd 157 | . . . 4 |
14 | 2, 3, 4, 5, 9, 13 | setindis 13501 | . . 3 |
15 | 1, 14 | syl6 33 | . 2 Ind |
16 | dfss2 3117 | . 2 | |
17 | 15, 16 | syl6ibr 161 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wal 1333 wceq 1335 wcel 2128 wral 2435 wrex 2436 wss 3102 c0 3394 csuc 4324 Ind wind 13460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-suc 4330 df-bj-ind 13461 |
This theorem is referenced by: bj-inf2vn2 13509 |
Copyright terms: Public domain | W3C validator |