![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem4 | GIF version |
Description: Lemma for bj-inf2vn2 14812. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vnlem4 | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem2 14808 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)))) | |
2 | nfv 1528 | . . . 4 ⊢ Ⅎ𝑧(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) | |
3 | nfv 1528 | . . . 4 ⊢ Ⅎ𝑧(𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) | |
4 | nfv 1528 | . . . 4 ⊢ Ⅎ𝑢(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) | |
5 | nfv 1528 | . . . 4 ⊢ Ⅎ𝑢(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) | |
6 | eleq1 2240 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴)) | |
7 | eleq1 2240 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝑍 ↔ 𝑡 ∈ 𝑍)) | |
8 | 6, 7 | imbi12d 234 | . . . . 5 ⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
9 | 8 | biimpd 144 | . . . 4 ⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) → (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
10 | eleq1 2240 | . . . . . 6 ⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) | |
11 | eleq1 2240 | . . . . . 6 ⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝑍 ↔ 𝑢 ∈ 𝑍)) | |
12 | 10, 11 | imbi12d 234 | . . . . 5 ⊢ (𝑧 = 𝑢 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍))) |
13 | 12 | biimprd 158 | . . . 4 ⊢ (𝑧 = 𝑢 → ((𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
14 | 2, 3, 4, 5, 9, 13 | setindis 14804 | . . 3 ⊢ (∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)) → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) |
15 | 1, 14 | syl6 33 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
16 | dfss2 3146 | . 2 ⊢ (𝐴 ⊆ 𝑍 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) | |
17 | 15, 16 | imbitrrdi 162 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ⊆ wss 3131 ∅c0 3424 suc csuc 4367 Ind wind 14763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-suc 4373 df-bj-ind 14764 |
This theorem is referenced by: bj-inf2vn2 14812 |
Copyright terms: Public domain | W3C validator |