| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem4 | GIF version | ||
| Description: Lemma for bj-inf2vn2 16338. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inf2vnlem4 | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-inf2vnlem2 16334 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)))) | |
| 2 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑧(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) | |
| 3 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑧(𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) | |
| 4 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑢(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) | |
| 5 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑢(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) | |
| 6 | eleq1 2292 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴)) | |
| 7 | eleq1 2292 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝑍 ↔ 𝑡 ∈ 𝑍)) | |
| 8 | 6, 7 | imbi12d 234 | . . . . 5 ⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
| 9 | 8 | biimpd 144 | . . . 4 ⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) → (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
| 10 | eleq1 2292 | . . . . . 6 ⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) | |
| 11 | eleq1 2292 | . . . . . 6 ⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝑍 ↔ 𝑢 ∈ 𝑍)) | |
| 12 | 10, 11 | imbi12d 234 | . . . . 5 ⊢ (𝑧 = 𝑢 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍))) |
| 13 | 12 | biimprd 158 | . . . 4 ⊢ (𝑧 = 𝑢 → ((𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
| 14 | 2, 3, 4, 5, 9, 13 | setindis 16330 | . . 3 ⊢ (∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)) → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) |
| 15 | 1, 14 | syl6 33 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
| 16 | ssalel 3212 | . 2 ⊢ (𝐴 ⊆ 𝑍 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) | |
| 17 | 15, 16 | imbitrrdi 162 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 ∅c0 3491 suc csuc 4456 Ind wind 16289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-suc 4462 df-bj-ind 16290 |
| This theorem is referenced by: bj-inf2vn2 16338 |
| Copyright terms: Public domain | W3C validator |