Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem4 GIF version

Theorem bj-inf2vnlem4 16108
Description: Lemma for bj-inf2vn2 16110. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem4 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑍,𝑦

Proof of Theorem bj-inf2vnlem4
Dummy variables 𝑧 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem2 16106 . . 3 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍))))
2 nfv 1552 . . . 4 𝑧(𝑡𝐴𝑡𝑍)
3 nfv 1552 . . . 4 𝑧(𝑢𝐴𝑢𝑍)
4 nfv 1552 . . . 4 𝑢(𝑧𝐴𝑧𝑍)
5 nfv 1552 . . . 4 𝑢(𝑡𝐴𝑡𝑍)
6 eleq1 2270 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝐴𝑡𝐴))
7 eleq1 2270 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝑍𝑡𝑍))
86, 7imbi12d 234 . . . . 5 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) ↔ (𝑡𝐴𝑡𝑍)))
98biimpd 144 . . . 4 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) → (𝑡𝐴𝑡𝑍)))
10 eleq1 2270 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝐴𝑢𝐴))
11 eleq1 2270 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝑍𝑢𝑍))
1210, 11imbi12d 234 . . . . 5 (𝑧 = 𝑢 → ((𝑧𝐴𝑧𝑍) ↔ (𝑢𝐴𝑢𝑍)))
1312biimprd 158 . . . 4 (𝑧 = 𝑢 → ((𝑢𝐴𝑢𝑍) → (𝑧𝐴𝑧𝑍)))
142, 3, 4, 5, 9, 13setindis 16102 . . 3 (∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍)) → ∀𝑧(𝑧𝐴𝑧𝑍))
151, 14syl6 33 . 2 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧𝐴𝑧𝑍)))
16 ssalel 3189 . 2 (𝐴𝑍 ↔ ∀𝑧(𝑧𝐴𝑧𝑍))
1715, 16imbitrrdi 162 1 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710  wal 1371   = wceq 1373  wcel 2178  wral 2486  wrex 2487  wss 3174  c0 3468  suc csuc 4430  Ind wind 16061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-suc 4436  df-bj-ind 16062
This theorem is referenced by:  bj-inf2vn2  16110
  Copyright terms: Public domain W3C validator