Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem4 GIF version

Theorem bj-inf2vnlem4 13865
Description: Lemma for bj-inf2vn2 13867. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem4 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑍,𝑦

Proof of Theorem bj-inf2vnlem4
Dummy variables 𝑧 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem2 13863 . . 3 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍))))
2 nfv 1516 . . . 4 𝑧(𝑡𝐴𝑡𝑍)
3 nfv 1516 . . . 4 𝑧(𝑢𝐴𝑢𝑍)
4 nfv 1516 . . . 4 𝑢(𝑧𝐴𝑧𝑍)
5 nfv 1516 . . . 4 𝑢(𝑡𝐴𝑡𝑍)
6 eleq1 2229 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝐴𝑡𝐴))
7 eleq1 2229 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝑍𝑡𝑍))
86, 7imbi12d 233 . . . . 5 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) ↔ (𝑡𝐴𝑡𝑍)))
98biimpd 143 . . . 4 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) → (𝑡𝐴𝑡𝑍)))
10 eleq1 2229 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝐴𝑢𝐴))
11 eleq1 2229 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝑍𝑢𝑍))
1210, 11imbi12d 233 . . . . 5 (𝑧 = 𝑢 → ((𝑧𝐴𝑧𝑍) ↔ (𝑢𝐴𝑢𝑍)))
1312biimprd 157 . . . 4 (𝑧 = 𝑢 → ((𝑢𝐴𝑢𝑍) → (𝑧𝐴𝑧𝑍)))
142, 3, 4, 5, 9, 13setindis 13859 . . 3 (∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍)) → ∀𝑧(𝑧𝐴𝑧𝑍))
151, 14syl6 33 . 2 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧𝐴𝑧𝑍)))
16 dfss2 3131 . 2 (𝐴𝑍 ↔ ∀𝑧(𝑧𝐴𝑧𝑍))
1715, 16syl6ibr 161 1 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698  wal 1341   = wceq 1343  wcel 2136  wral 2444  wrex 2445  wss 3116  c0 3409  suc csuc 4343  Ind wind 13818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-suc 4349  df-bj-ind 13819
This theorem is referenced by:  bj-inf2vn2  13867
  Copyright terms: Public domain W3C validator