![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem4 | GIF version |
Description: Lemma for bj-inf2vn2 15472. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vnlem4 | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem2 15468 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)))) | |
2 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑧(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) | |
3 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑧(𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) | |
4 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑢(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) | |
5 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑢(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) | |
6 | eleq1 2256 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴)) | |
7 | eleq1 2256 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝑍 ↔ 𝑡 ∈ 𝑍)) | |
8 | 6, 7 | imbi12d 234 | . . . . 5 ⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
9 | 8 | biimpd 144 | . . . 4 ⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) → (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
10 | eleq1 2256 | . . . . . 6 ⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) | |
11 | eleq1 2256 | . . . . . 6 ⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝑍 ↔ 𝑢 ∈ 𝑍)) | |
12 | 10, 11 | imbi12d 234 | . . . . 5 ⊢ (𝑧 = 𝑢 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍))) |
13 | 12 | biimprd 158 | . . . 4 ⊢ (𝑧 = 𝑢 → ((𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
14 | 2, 3, 4, 5, 9, 13 | setindis 15464 | . . 3 ⊢ (∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)) → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) |
15 | 1, 14 | syl6 33 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
16 | dfss2 3168 | . 2 ⊢ (𝐴 ⊆ 𝑍 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) | |
17 | 15, 16 | imbitrrdi 162 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3153 ∅c0 3446 suc csuc 4396 Ind wind 15423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-suc 4402 df-bj-ind 15424 |
This theorem is referenced by: bj-inf2vn2 15472 |
Copyright terms: Public domain | W3C validator |