Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem4 GIF version

Theorem bj-inf2vnlem4 14008
Description: Lemma for bj-inf2vn2 14010. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem4 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑍,𝑦

Proof of Theorem bj-inf2vnlem4
Dummy variables 𝑧 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem2 14006 . . 3 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍))))
2 nfv 1521 . . . 4 𝑧(𝑡𝐴𝑡𝑍)
3 nfv 1521 . . . 4 𝑧(𝑢𝐴𝑢𝑍)
4 nfv 1521 . . . 4 𝑢(𝑧𝐴𝑧𝑍)
5 nfv 1521 . . . 4 𝑢(𝑡𝐴𝑡𝑍)
6 eleq1 2233 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝐴𝑡𝐴))
7 eleq1 2233 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝑍𝑡𝑍))
86, 7imbi12d 233 . . . . 5 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) ↔ (𝑡𝐴𝑡𝑍)))
98biimpd 143 . . . 4 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) → (𝑡𝐴𝑡𝑍)))
10 eleq1 2233 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝐴𝑢𝐴))
11 eleq1 2233 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝑍𝑢𝑍))
1210, 11imbi12d 233 . . . . 5 (𝑧 = 𝑢 → ((𝑧𝐴𝑧𝑍) ↔ (𝑢𝐴𝑢𝑍)))
1312biimprd 157 . . . 4 (𝑧 = 𝑢 → ((𝑢𝐴𝑢𝑍) → (𝑧𝐴𝑧𝑍)))
142, 3, 4, 5, 9, 13setindis 14002 . . 3 (∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍)) → ∀𝑧(𝑧𝐴𝑧𝑍))
151, 14syl6 33 . 2 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧𝐴𝑧𝑍)))
16 dfss2 3136 . 2 (𝐴𝑍 ↔ ∀𝑧(𝑧𝐴𝑧𝑍))
1715, 16syl6ibr 161 1 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703  wal 1346   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121  c0 3414  suc csuc 4350  Ind wind 13961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-suc 4356  df-bj-ind 13962
This theorem is referenced by:  bj-inf2vn2  14010
  Copyright terms: Public domain W3C validator