Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vn2 Unicode version

Theorem bj-inf2vn2 13857
Description: A sufficient condition for  om to be a set; unbounded version of bj-inf2vn 13856. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vn2  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Distinct variable group:    x, y, A
Allowed substitution hints:    V( x, y)

Proof of Theorem bj-inf2vn2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem1 13852 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
2 biimp 117 . . . . . . 7  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
32alimi 1443 . . . . . 6  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  e.  A  ->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) ) )
4 df-ral 2449 . . . . . 6  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  <->  A. x
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
53, 4sylibr 133 . . . . 5  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )
6 bj-inf2vnlem4 13855 . . . . 5  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  z  ->  A  C_  z ) )
75, 6syl 14 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  z  ->  A  C_  z ) )
87alrimiv 1862 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z (Ind  z  ->  A  C_  z ) )
91, 8jca 304 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  A  /\  A. z (Ind  z  ->  A 
C_  z ) ) )
10 bj-om 13819 . 2  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. z (Ind  z  ->  A  C_  z
) ) ) )
119, 10syl5ibr 155 1  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   (/)c0 3409   suc csuc 4343   omcom 4567  Ind wind 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4108  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-bd0 13695  ax-bdor 13698  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568  df-bdc 13723  df-bj-ind 13809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator