Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snexg GIF version

Theorem bj-snexg 13947
Description: snexg 4170 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem bj-snexg
StepHypRef Expression
1 dfsn2 3597 . 2 {𝐴} = {𝐴, 𝐴}
2 bj-prexg 13946 . . 3 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} ∈ V)
32anidms 395 . 2 (𝐴𝑉 → {𝐴, 𝐴} ∈ V)
41, 3eqeltrid 2257 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  Vcvv 2730  {csn 3583  {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-pr 4194  ax-bdor 13851  ax-bdeq 13855  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590
This theorem is referenced by:  bj-snex  13948  bj-sels  13949  bj-sucexg  13957
  Copyright terms: Public domain W3C validator