Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snexg GIF version

Theorem bj-snexg 16047
Description: snexg 4244 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem bj-snexg
StepHypRef Expression
1 dfsn2 3657 . 2 {𝐴} = {𝐴, 𝐴}
2 bj-prexg 16046 . . 3 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} ∈ V)
32anidms 397 . 2 (𝐴𝑉 → {𝐴, 𝐴} ∈ V)
41, 3eqeltrid 2294 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  Vcvv 2776  {csn 3643  {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-pr 4269  ax-bdor 15951  ax-bdeq 15955  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650
This theorem is referenced by:  bj-snex  16048  bj-sels  16049  bj-sucexg  16057
  Copyright terms: Public domain W3C validator