Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snexg GIF version

Theorem bj-snexg 15558
Description: snexg 4217 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem bj-snexg
StepHypRef Expression
1 dfsn2 3636 . 2 {𝐴} = {𝐴, 𝐴}
2 bj-prexg 15557 . . 3 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} ∈ V)
32anidms 397 . 2 (𝐴𝑉 → {𝐴, 𝐴} ∈ V)
41, 3eqeltrid 2283 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  {csn 3622  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-pr 4242  ax-bdor 15462  ax-bdeq 15466  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by:  bj-snex  15559  bj-sels  15560  bj-sucexg  15568
  Copyright terms: Public domain W3C validator