| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-snexg | GIF version | ||
| Description: snexg 4268 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3680 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | bj-prexg 16274 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝐴, 𝐴} ∈ V) | |
| 3 | 2 | anidms 397 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ∈ V) |
| 4 | 1, 3 | eqeltrid 2316 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-pr 4293 ax-bdor 16179 ax-bdeq 16183 ax-bdsep 16247 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: bj-snex 16276 bj-sels 16277 bj-sucexg 16285 |
| Copyright terms: Public domain | W3C validator |