| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-snexg | GIF version | ||
| Description: snexg 4244 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3657 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | bj-prexg 16046 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝐴, 𝐴} ∈ V) | |
| 3 | 2 | anidms 397 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ∈ V) |
| 4 | 1, 3 | eqeltrid 2294 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 Vcvv 2776 {csn 3643 {cpr 3644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-pr 4269 ax-bdor 15951 ax-bdeq 15955 ax-bdsep 16019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: bj-snex 16048 bj-sels 16049 bj-sucexg 16057 |
| Copyright terms: Public domain | W3C validator |