Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-snexg | GIF version |
Description: snexg 4163 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3590 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | bj-prexg 13793 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → {𝐴, 𝐴} ∈ V) | |
3 | 2 | anidms 395 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐴} ∈ V) |
4 | 1, 3 | eqeltrid 2253 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-pr 4187 ax-bdor 13698 ax-bdeq 13702 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: bj-snex 13795 bj-sels 13796 bj-sucexg 13804 |
Copyright terms: Public domain | W3C validator |