Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucexg Unicode version

Theorem bj-sucexg 13957
Description: sucexg 4482 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sucexg  |-  ( A  e.  V  ->  suc  A  e.  _V )

Proof of Theorem bj-sucexg
StepHypRef Expression
1 bj-snexg 13947 . . . 4  |-  ( A  e.  V  ->  { A }  e.  _V )
21pm4.71i 389 . . 3  |-  ( A  e.  V  <->  ( A  e.  V  /\  { A }  e.  _V )
)
32biimpi 119 . 2  |-  ( A  e.  V  ->  ( A  e.  V  /\  { A }  e.  _V ) )
4 bj-unexg 13956 . 2  |-  ( ( A  e.  V  /\  { A }  e.  _V )  ->  ( A  u.  { A } )  e. 
_V )
5 df-suc 4356 . . . 4  |-  suc  A  =  ( A  u.  { A } )
65eleq1i 2236 . . 3  |-  ( suc 
A  e.  _V  <->  ( A  u.  { A } )  e.  _V )
76biimpri 132 . 2  |-  ( ( A  u.  { A } )  e.  _V  ->  suc  A  e.  _V )
83, 4, 73syl 17 1  |-  ( A  e.  V  ->  suc  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   _Vcvv 2730    u. cun 3119   {csn 3583   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdor 13851  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-suc 4356  df-bdc 13876
This theorem is referenced by:  bj-sucex  13958
  Copyright terms: Public domain W3C validator