ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvixpv Unicode version

Theorem cbvixpv 6802
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
cbvixpv.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvixpv  |-  X_ x  e.  A  B  =  X_ y  e.  A  C
Distinct variable groups:    x, A, y   
y, B    x, C
Allowed substitution hints:    B( x)    C( y)

Proof of Theorem cbvixpv
StepHypRef Expression
1 nfcv 2347 . 2  |-  F/_ y B
2 nfcv 2347 . 2  |-  F/_ x C
3 cbvixpv.1 . 2  |-  ( x  =  y  ->  B  =  C )
41, 2, 3cbvixp 6801 1  |-  X_ x  e.  A  B  =  X_ y  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   X_cixp 6784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fn 5273  df-fv 5278  df-ixp 6785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator