ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvixpv Unicode version

Theorem cbvixpv 6564
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
cbvixpv.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvixpv  |-  X_ x  e.  A  B  =  X_ y  e.  A  C
Distinct variable groups:    x, A, y   
y, B    x, C
Allowed substitution hints:    B( x)    C( y)

Proof of Theorem cbvixpv
StepHypRef Expression
1 nfcv 2255 . 2  |-  F/_ y B
2 nfcv 2255 . 2  |-  F/_ x C
3 cbvixpv.1 . 2  |-  ( x  =  y  ->  B  =  C )
41, 2, 3cbvixp 6563 1  |-  X_ x  e.  A  B  =  X_ y  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314   X_cixp 6546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-iota 5046  df-fn 5084  df-fv 5089  df-ixp 6547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator