ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvixpv GIF version

Theorem cbvixpv 6729
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
cbvixpv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixpv X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvixpv
StepHypRef Expression
1 nfcv 2329 . 2 𝑦𝐵
2 nfcv 2329 . 2 𝑥𝐶
3 cbvixpv.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvixp 6728 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  Xcixp 6711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fn 5231  df-fv 5236  df-ixp 6712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator