| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxpf | Unicode version | ||
| Description: Version of ralxp 4809 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralxpf.1 |
|
| ralxpf.2 |
|
| ralxpf.3 |
|
| ralxpf.4 |
|
| Ref | Expression |
|---|---|
| ralxpf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsv 2745 |
. 2
| |
| 2 | cbvralsv 2745 |
. . . 4
| |
| 3 | 2 | ralbii 2503 |
. . 3
|
| 4 | nfv 1542 |
. . . 4
| |
| 5 | nfcv 2339 |
. . . . 5
| |
| 6 | nfs1v 1958 |
. . . . 5
| |
| 7 | 5, 6 | nfralxy 2535 |
. . . 4
|
| 8 | sbequ12 1785 |
. . . . 5
| |
| 9 | 8 | ralbidv 2497 |
. . . 4
|
| 10 | 4, 7, 9 | cbvral 2725 |
. . 3
|
| 11 | vex 2766 |
. . . . . 6
| |
| 12 | vex 2766 |
. . . . . 6
| |
| 13 | 11, 12 | eqvinop 4276 |
. . . . 5
|
| 14 | ralxpf.1 |
. . . . . . . 8
| |
| 15 | 14 | nfsb 1965 |
. . . . . . 7
|
| 16 | 6 | nfsb 1965 |
. . . . . . 7
|
| 17 | 15, 16 | nfbi 1603 |
. . . . . 6
|
| 18 | ralxpf.2 |
. . . . . . . . 9
| |
| 19 | 18 | nfsb 1965 |
. . . . . . . 8
|
| 20 | nfs1v 1958 |
. . . . . . . 8
| |
| 21 | 19, 20 | nfbi 1603 |
. . . . . . 7
|
| 22 | ralxpf.3 |
. . . . . . . . 9
| |
| 23 | ralxpf.4 |
. . . . . . . . 9
| |
| 24 | 22, 23 | sbhypf 2813 |
. . . . . . . 8
|
| 25 | vex 2766 |
. . . . . . . . . 10
| |
| 26 | vex 2766 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | opth 4270 |
. . . . . . . . 9
|
| 28 | sbequ12 1785 |
. . . . . . . . . 10
| |
| 29 | 8, 28 | sylan9bb 462 |
. . . . . . . . 9
|
| 30 | 27, 29 | sylbi 121 |
. . . . . . . 8
|
| 31 | 24, 30 | sylan9bb 462 |
. . . . . . 7
|
| 32 | 21, 31 | exlimi 1608 |
. . . . . 6
|
| 33 | 17, 32 | exlimi 1608 |
. . . . 5
|
| 34 | 13, 33 | sylbi 121 |
. . . 4
|
| 35 | 34 | ralxp 4809 |
. . 3
|
| 36 | 3, 10, 35 | 3bitr4ri 213 |
. 2
|
| 37 | 1, 36 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-iun 3918 df-opab 4095 df-xp 4669 df-rel 4670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |