| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxpf | Unicode version | ||
| Description: Version of ralxp 4839 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralxpf.1 |
|
| ralxpf.2 |
|
| ralxpf.3 |
|
| ralxpf.4 |
|
| Ref | Expression |
|---|---|
| ralxpf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsv 2758 |
. 2
| |
| 2 | cbvralsv 2758 |
. . . 4
| |
| 3 | 2 | ralbii 2514 |
. . 3
|
| 4 | nfv 1552 |
. . . 4
| |
| 5 | nfcv 2350 |
. . . . 5
| |
| 6 | nfs1v 1968 |
. . . . 5
| |
| 7 | 5, 6 | nfralxy 2546 |
. . . 4
|
| 8 | sbequ12 1795 |
. . . . 5
| |
| 9 | 8 | ralbidv 2508 |
. . . 4
|
| 10 | 4, 7, 9 | cbvral 2738 |
. . 3
|
| 11 | vex 2779 |
. . . . . 6
| |
| 12 | vex 2779 |
. . . . . 6
| |
| 13 | 11, 12 | eqvinop 4305 |
. . . . 5
|
| 14 | ralxpf.1 |
. . . . . . . 8
| |
| 15 | 14 | nfsb 1975 |
. . . . . . 7
|
| 16 | 6 | nfsb 1975 |
. . . . . . 7
|
| 17 | 15, 16 | nfbi 1613 |
. . . . . 6
|
| 18 | ralxpf.2 |
. . . . . . . . 9
| |
| 19 | 18 | nfsb 1975 |
. . . . . . . 8
|
| 20 | nfs1v 1968 |
. . . . . . . 8
| |
| 21 | 19, 20 | nfbi 1613 |
. . . . . . 7
|
| 22 | ralxpf.3 |
. . . . . . . . 9
| |
| 23 | ralxpf.4 |
. . . . . . . . 9
| |
| 24 | 22, 23 | sbhypf 2827 |
. . . . . . . 8
|
| 25 | vex 2779 |
. . . . . . . . . 10
| |
| 26 | vex 2779 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | opth 4299 |
. . . . . . . . 9
|
| 28 | sbequ12 1795 |
. . . . . . . . . 10
| |
| 29 | 8, 28 | sylan9bb 462 |
. . . . . . . . 9
|
| 30 | 27, 29 | sylbi 121 |
. . . . . . . 8
|
| 31 | 24, 30 | sylan9bb 462 |
. . . . . . 7
|
| 32 | 21, 31 | exlimi 1618 |
. . . . . 6
|
| 33 | 17, 32 | exlimi 1618 |
. . . . 5
|
| 34 | 13, 33 | sylbi 121 |
. . . 4
|
| 35 | 34 | ralxp 4839 |
. . 3
|
| 36 | 3, 10, 35 | 3bitr4ri 213 |
. 2
|
| 37 | 1, 36 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-iun 3943 df-opab 4122 df-xp 4699 df-rel 4700 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |