![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnre | Unicode version |
Description: Alias for ax-cnre 7983, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnre |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-cnre 7983 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-cnre 7983 |
This theorem is referenced by: mulrid 8016 cnegexlem2 8195 cnegex 8197 apirr 8624 apsym 8625 apcotr 8626 apadd1 8627 apneg 8630 mulext1 8631 apti 8641 recexap 8672 creur 8978 creui 8979 cju 8980 cnref1o 9716 replim 11003 cjap 11050 |
Copyright terms: Public domain | W3C validator |