ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexap Unicode version

Theorem recexap 8697
Description: Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexap  |-  ( ( A  e.  CC  /\  A #  0 )  ->  E. x  e.  CC  ( A  x.  x )  =  1 )
Distinct variable group:    x, A

Proof of Theorem recexap
Dummy variables  y  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8039 . . 3  |-  ( A  e.  CC  ->  E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b ) ) )
2 recexaplem2 8696 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  (
a  +  ( _i  x.  b ) ) #  0 )  ->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 )
323expia 1207 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) ) #  0  -> 
( ( a  x.  a )  +  ( b  x.  b ) ) #  0 ) )
4 remulcl 8024 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  a  e.  RR )  ->  ( a  x.  a
)  e.  RR )
54anidms 397 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  (
a  x.  a )  e.  RR )
6 remulcl 8024 . . . . . . . . . . . 12  |-  ( ( b  e.  RR  /\  b  e.  RR )  ->  ( b  x.  b
)  e.  RR )
76anidms 397 . . . . . . . . . . 11  |-  ( b  e.  RR  ->  (
b  x.  b )  e.  RR )
8 readdcl 8022 . . . . . . . . . . 11  |-  ( ( ( a  x.  a
)  e.  RR  /\  ( b  x.  b
)  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b
) )  e.  RR )
95, 7, 8syl2an 289 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR )
10 0re 8043 . . . . . . . . . 10  |-  0  e.  RR
11 apreap 8631 . . . . . . . . . 10  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  0  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  <->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 ) )
129, 10, 11sylancl 413 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  <->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 ) )
13 recexre 8622 . . . . . . . . . . . 12  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  ( ( a  x.  a )  +  ( b  x.  b ) ) #  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
149, 13sylan 283 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b
) )  x.  y
)  =  1 )
15 recn 8029 . . . . . . . . . . . . 13  |-  ( a  e.  RR  ->  a  e.  CC )
16 recn 8029 . . . . . . . . . . . . 13  |-  ( b  e.  RR  ->  b  e.  CC )
17 recn 8029 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  y  e.  CC )
18 ax-icn 7991 . . . . . . . . . . . . . . . . . . . . 21  |-  _i  e.  CC
19 mulcl 8023 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( _i  e.  CC  /\  b  e.  CC )  ->  ( _i  x.  b
)  e.  CC )
2018, 19mpan 424 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  e.  CC  ->  (
_i  x.  b )  e.  CC )
21 subcl 8242 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
2220, 21sylan2 286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  -  (
_i  x.  b )
)  e.  CC )
23 mulcl 8023 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  -  (
_i  x.  b )
)  e.  CC  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
2422, 23sylan 283 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b ) )  x.  y )  e.  CC )
2524adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
26 addcl 8021 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2720, 26sylan2 286 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
2827adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2922adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
30 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  y  e.  CC )
3128, 29, 30mulassd 8067 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) ) )
32 recextlem1 8695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( a  +  ( _i  x.  b
) )  x.  (
a  -  ( _i  x.  b ) ) )  =  ( ( a  x.  a )  +  ( b  x.  b ) ) )
3332adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  (
_i  x.  b )
) )  =  ( ( a  x.  a
)  +  ( b  x.  b ) ) )
3433oveq1d 5940 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
3531, 34eqtr3d 2231 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
36 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
3735, 36sylan9eq 2249 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )
38 oveq2 5933 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) ) )
3938eqeq1d 2205 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) )  =  1 ) )
4039rspcev 2868 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC  /\  ( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4125, 37, 40syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4241exp31 364 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  CC  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4317, 42syl5 32 . . . . . . . . . . . . . 14  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  RR  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4443rexlimdv 2613 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4515, 16, 44syl2an 289 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4645adantr 276 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  -> 
( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4714, 46mpd 13 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4847ex 115 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
4912, 48sylbid 150 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
503, 49syld 45 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
5150adantr 276 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( (
a  +  ( _i  x.  b ) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
52 breq1 4037 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A #  0  <->  ( a  +  ( _i  x.  b
) ) #  0 ) )
5352adantl 277 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A #  0 
<->  ( a  +  ( _i  x.  b ) ) #  0 ) )
54 oveq1 5932 . . . . . . . . 9  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  x ) )
5554eqeq1d 2205 . . . . . . . 8  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  (
( A  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5655rexbidv 2498 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( E. x  e.  CC  ( A  x.  x
)  =  1  <->  E. x  e.  CC  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5756adantl 277 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( E. x  e.  CC  ( A  x.  x )  =  1  <->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5851, 53, 573imtr4d 203 . . . . 5  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x
)  =  1 ) )
5958ex 115 . . . 4  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( A  =  ( a  +  ( _i  x.  b ) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x
)  =  1 ) ) )
6059rexlimivv 2620 . . 3  |-  ( E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b
) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
611, 60syl 14 . 2  |-  ( A  e.  CC  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
6261imp 124 1  |-  ( ( A  e.  CC  /\  A #  0 )  ->  E. x  e.  CC  ( A  x.  x )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897   _ici 7898    + caddc 7899    x. cmul 7901    - cmin 8214   # creap 8618   # cap 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626
This theorem is referenced by:  mulap0  8698  mulcanapd  8705  receuap  8713  recapb  8715
  Copyright terms: Public domain W3C validator