ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexap Unicode version

Theorem recexap 8800
Description: Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexap  |-  ( ( A  e.  CC  /\  A #  0 )  ->  E. x  e.  CC  ( A  x.  x )  =  1 )
Distinct variable group:    x, A

Proof of Theorem recexap
Dummy variables  y  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8142 . . 3  |-  ( A  e.  CC  ->  E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b ) ) )
2 recexaplem2 8799 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  (
a  +  ( _i  x.  b ) ) #  0 )  ->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 )
323expia 1229 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) ) #  0  -> 
( ( a  x.  a )  +  ( b  x.  b ) ) #  0 ) )
4 remulcl 8127 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  a  e.  RR )  ->  ( a  x.  a
)  e.  RR )
54anidms 397 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  (
a  x.  a )  e.  RR )
6 remulcl 8127 . . . . . . . . . . . 12  |-  ( ( b  e.  RR  /\  b  e.  RR )  ->  ( b  x.  b
)  e.  RR )
76anidms 397 . . . . . . . . . . 11  |-  ( b  e.  RR  ->  (
b  x.  b )  e.  RR )
8 readdcl 8125 . . . . . . . . . . 11  |-  ( ( ( a  x.  a
)  e.  RR  /\  ( b  x.  b
)  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b
) )  e.  RR )
95, 7, 8syl2an 289 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR )
10 0re 8146 . . . . . . . . . 10  |-  0  e.  RR
11 apreap 8734 . . . . . . . . . 10  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  0  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  <->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 ) )
129, 10, 11sylancl 413 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  <->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 ) )
13 recexre 8725 . . . . . . . . . . . 12  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  ( ( a  x.  a )  +  ( b  x.  b ) ) #  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
149, 13sylan 283 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b
) )  x.  y
)  =  1 )
15 recn 8132 . . . . . . . . . . . . 13  |-  ( a  e.  RR  ->  a  e.  CC )
16 recn 8132 . . . . . . . . . . . . 13  |-  ( b  e.  RR  ->  b  e.  CC )
17 recn 8132 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  y  e.  CC )
18 ax-icn 8094 . . . . . . . . . . . . . . . . . . . . 21  |-  _i  e.  CC
19 mulcl 8126 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( _i  e.  CC  /\  b  e.  CC )  ->  ( _i  x.  b
)  e.  CC )
2018, 19mpan 424 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  e.  CC  ->  (
_i  x.  b )  e.  CC )
21 subcl 8345 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
2220, 21sylan2 286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  -  (
_i  x.  b )
)  e.  CC )
23 mulcl 8126 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  -  (
_i  x.  b )
)  e.  CC  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
2422, 23sylan 283 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b ) )  x.  y )  e.  CC )
2524adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
26 addcl 8124 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2720, 26sylan2 286 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
2827adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2922adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
30 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  y  e.  CC )
3128, 29, 30mulassd 8170 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) ) )
32 recextlem1 8798 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( a  +  ( _i  x.  b
) )  x.  (
a  -  ( _i  x.  b ) ) )  =  ( ( a  x.  a )  +  ( b  x.  b ) ) )
3332adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  (
_i  x.  b )
) )  =  ( ( a  x.  a
)  +  ( b  x.  b ) ) )
3433oveq1d 6016 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
3531, 34eqtr3d 2264 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
36 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
3735, 36sylan9eq 2282 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )
38 oveq2 6009 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) ) )
3938eqeq1d 2238 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) )  =  1 ) )
4039rspcev 2907 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC  /\  ( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4125, 37, 40syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4241exp31 364 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  CC  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4317, 42syl5 32 . . . . . . . . . . . . . 14  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  RR  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4443rexlimdv 2647 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4515, 16, 44syl2an 289 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4645adantr 276 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  -> 
( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4714, 46mpd 13 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4847ex 115 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
4912, 48sylbid 150 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
503, 49syld 45 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
5150adantr 276 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( (
a  +  ( _i  x.  b ) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
52 breq1 4086 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A #  0  <->  ( a  +  ( _i  x.  b
) ) #  0 ) )
5352adantl 277 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A #  0 
<->  ( a  +  ( _i  x.  b ) ) #  0 ) )
54 oveq1 6008 . . . . . . . . 9  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  x ) )
5554eqeq1d 2238 . . . . . . . 8  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  (
( A  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5655rexbidv 2531 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( E. x  e.  CC  ( A  x.  x
)  =  1  <->  E. x  e.  CC  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5756adantl 277 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( E. x  e.  CC  ( A  x.  x )  =  1  <->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5851, 53, 573imtr4d 203 . . . . 5  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x
)  =  1 ) )
5958ex 115 . . . 4  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( A  =  ( a  +  ( _i  x.  b ) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x
)  =  1 ) ) )
6059rexlimivv 2654 . . 3  |-  ( E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b
) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
611, 60syl 14 . 2  |-  ( A  e.  CC  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
6261imp 124 1  |-  ( ( A  e.  CC  /\  A #  0 )  ->  E. x  e.  CC  ( A  x.  x )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000   _ici 8001    + caddc 8002    x. cmul 8004    - cmin 8317   # creap 8721   # cap 8728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729
This theorem is referenced by:  mulap0  8801  mulcanapd  8808  receuap  8816  recapb  8818
  Copyright terms: Public domain W3C validator