ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexap Unicode version

Theorem recexap 8382
Description: Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
Assertion
Ref Expression
recexap  |-  ( ( A  e.  CC  /\  A #  0 )  ->  E. x  e.  CC  ( A  x.  x )  =  1 )
Distinct variable group:    x, A

Proof of Theorem recexap
Dummy variables  y  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7730 . . 3  |-  ( A  e.  CC  ->  E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b ) ) )
2 recexaplem2 8381 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  (
a  +  ( _i  x.  b ) ) #  0 )  ->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 )
323expia 1168 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) ) #  0  -> 
( ( a  x.  a )  +  ( b  x.  b ) ) #  0 ) )
4 remulcl 7716 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  a  e.  RR )  ->  ( a  x.  a
)  e.  RR )
54anidms 394 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  (
a  x.  a )  e.  RR )
6 remulcl 7716 . . . . . . . . . . . 12  |-  ( ( b  e.  RR  /\  b  e.  RR )  ->  ( b  x.  b
)  e.  RR )
76anidms 394 . . . . . . . . . . 11  |-  ( b  e.  RR  ->  (
b  x.  b )  e.  RR )
8 readdcl 7714 . . . . . . . . . . 11  |-  ( ( ( a  x.  a
)  e.  RR  /\  ( b  x.  b
)  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b
) )  e.  RR )
95, 7, 8syl2an 287 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR )
10 0re 7734 . . . . . . . . . 10  |-  0  e.  RR
11 apreap 8317 . . . . . . . . . 10  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  0  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  <->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 ) )
129, 10, 11sylancl 409 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  <->  (
( a  x.  a
)  +  ( b  x.  b ) ) #  0 ) )
13 recexre 8308 . . . . . . . . . . . 12  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  ( ( a  x.  a )  +  ( b  x.  b ) ) #  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
149, 13sylan 281 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b
) )  x.  y
)  =  1 )
15 recn 7721 . . . . . . . . . . . . 13  |-  ( a  e.  RR  ->  a  e.  CC )
16 recn 7721 . . . . . . . . . . . . 13  |-  ( b  e.  RR  ->  b  e.  CC )
17 recn 7721 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  y  e.  CC )
18 ax-icn 7683 . . . . . . . . . . . . . . . . . . . . 21  |-  _i  e.  CC
19 mulcl 7715 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( _i  e.  CC  /\  b  e.  CC )  ->  ( _i  x.  b
)  e.  CC )
2018, 19mpan 420 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  e.  CC  ->  (
_i  x.  b )  e.  CC )
21 subcl 7929 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
2220, 21sylan2 284 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  -  (
_i  x.  b )
)  e.  CC )
23 mulcl 7715 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  -  (
_i  x.  b )
)  e.  CC  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
2422, 23sylan 281 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b ) )  x.  y )  e.  CC )
2524adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
26 addcl 7713 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2720, 26sylan2 284 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
2827adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2922adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
30 simpr 109 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  y  e.  CC )
3128, 29, 30mulassd 7757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) ) )
32 recextlem1 8380 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( a  +  ( _i  x.  b
) )  x.  (
a  -  ( _i  x.  b ) ) )  =  ( ( a  x.  a )  +  ( b  x.  b ) ) )
3332adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  (
_i  x.  b )
) )  =  ( ( a  x.  a
)  +  ( b  x.  b ) ) )
3433oveq1d 5757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
3531, 34eqtr3d 2152 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
36 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
3735, 36sylan9eq 2170 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )
38 oveq2 5750 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) ) )
3938eqeq1d 2126 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) )  =  1 ) )
4039rspcev 2763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC  /\  ( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4125, 37, 40syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4241exp31 361 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  CC  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4317, 42syl5 32 . . . . . . . . . . . . . 14  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  RR  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4443rexlimdv 2525 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4515, 16, 44syl2an 287 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4645adantr 274 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  -> 
( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4714, 46mpd 13 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) ) #  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
4847ex 114 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
4912, 48sylbid 149 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
503, 49syld 45 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
5150adantr 274 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( (
a  +  ( _i  x.  b ) ) #  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
52 breq1 3902 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A #  0  <->  ( a  +  ( _i  x.  b
) ) #  0 ) )
5352adantl 275 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A #  0 
<->  ( a  +  ( _i  x.  b ) ) #  0 ) )
54 oveq1 5749 . . . . . . . . 9  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  x ) )
5554eqeq1d 2126 . . . . . . . 8  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  (
( A  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5655rexbidv 2415 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( E. x  e.  CC  ( A  x.  x
)  =  1  <->  E. x  e.  CC  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5756adantl 275 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( E. x  e.  CC  ( A  x.  x )  =  1  <->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5851, 53, 573imtr4d 202 . . . . 5  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x
)  =  1 ) )
5958ex 114 . . . 4  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( A  =  ( a  +  ( _i  x.  b ) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x
)  =  1 ) ) )
6059rexlimivv 2532 . . 3  |-  ( E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b
) )  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
611, 60syl 14 . 2  |-  ( A  e.  CC  ->  ( A #  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
6261imp 123 1  |-  ( ( A  e.  CC  /\  A #  0 )  ->  E. x  e.  CC  ( A  x.  x )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465   E.wrex 2394   class class class wbr 3899  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588   1c1 7589   _ici 7590    + caddc 7591    x. cmul 7593    - cmin 7901   # creap 8304   # cap 8311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312
This theorem is referenced by:  mulap0  8383  mulcanapd  8390  receuap  8398
  Copyright terms: Public domain W3C validator