Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnegexlem2 | Unicode version |
Description: Existence of a real number which produces a real number when multiplied by . (Hint: zero is such a number, although we don't need to prove that yet). Lemma for cnegex 8076. (Contributed by Eric Schmidt, 22-May-2007.) |
Ref | Expression |
---|---|
cnegexlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7891 | . 2 | |
2 | cnre 7895 | . 2 | |
3 | ax-rnegex 7862 | . . . . . 6 | |
4 | 3 | adantr 274 | . . . . 5 |
5 | recn 7886 | . . . . . . . . . . 11 | |
6 | ax-icn 7848 | . . . . . . . . . . . 12 | |
7 | recn 7886 | . . . . . . . . . . . 12 | |
8 | mulcl 7880 | . . . . . . . . . . . 12 | |
9 | 6, 7, 8 | sylancr 411 | . . . . . . . . . . 11 |
10 | recn 7886 | . . . . . . . . . . 11 | |
11 | addid2 8037 | . . . . . . . . . . . . . . 15 | |
12 | 11 | 3ad2ant3 1010 | . . . . . . . . . . . . . 14 |
13 | 12 | adantr 274 | . . . . . . . . . . . . 13 |
14 | oveq1 5849 | . . . . . . . . . . . . . . 15 | |
15 | 14 | ad2antrl 482 | . . . . . . . . . . . . . 14 |
16 | add32 8057 | . . . . . . . . . . . . . . . . 17 | |
17 | 16 | 3com23 1199 | . . . . . . . . . . . . . . . 16 |
18 | oveq1 5849 | . . . . . . . . . . . . . . . . 17 | |
19 | 18 | eqcomd 2171 | . . . . . . . . . . . . . . . 16 |
20 | 17, 19 | sylan9eq 2219 | . . . . . . . . . . . . . . 15 |
21 | 20 | adantrl 470 | . . . . . . . . . . . . . 14 |
22 | addid2 8037 | . . . . . . . . . . . . . . . 16 | |
23 | 22 | 3ad2ant2 1009 | . . . . . . . . . . . . . . 15 |
24 | 23 | adantr 274 | . . . . . . . . . . . . . 14 |
25 | 15, 21, 24 | 3eqtr3d 2206 | . . . . . . . . . . . . 13 |
26 | 13, 25 | eqtr3d 2200 | . . . . . . . . . . . 12 |
27 | 26 | ex 114 | . . . . . . . . . . 11 |
28 | 5, 9, 10, 27 | syl3an 1270 | . . . . . . . . . 10 |
29 | 28 | 3expa 1193 | . . . . . . . . 9 |
30 | 29 | imp 123 | . . . . . . . 8 |
31 | simplr 520 | . . . . . . . 8 | |
32 | 30, 31 | eqeltrrd 2244 | . . . . . . 7 |
33 | 32 | exp32 363 | . . . . . 6 |
34 | 33 | rexlimdva 2583 | . . . . 5 |
35 | 4, 34 | mpd 13 | . . . 4 |
36 | 35 | reximdva 2568 | . . 3 |
37 | 36 | rexlimiv 2577 | . 2 |
38 | 1, 2, 37 | mp2b 8 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wrex 2445 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 ci 7755 caddc 7756 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: cnegex 8076 |
Copyright terms: Public domain | W3C validator |