ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  replim Unicode version

Theorem replim 10643
Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
replim  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )

Proof of Theorem replim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7774 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 crre 10641 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3 crim 10642 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
43oveq2d 5790 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) )  =  ( _i  x.  y ) )
52, 4oveq12d 5792 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) )  +  ( _i  x.  ( Im
`  ( x  +  ( _i  x.  y
) ) ) ) )  =  ( x  +  ( _i  x.  y ) ) )
65eqcomd 2145 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  =  ( ( Re `  ( x  +  ( _i  x.  y ) ) )  +  ( _i  x.  ( Im `  ( x  +  ( _i  x.  y ) ) ) ) ) )
7 id 19 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
8 fveq2 5421 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
Re `  A )  =  ( Re `  ( x  +  (
_i  x.  y )
) ) )
9 fveq2 5421 . . . . . . 7  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
Im `  A )  =  ( Im `  ( x  +  (
_i  x.  y )
) ) )
109oveq2d 5790 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
_i  x.  ( Im `  A ) )  =  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) ) )
118, 10oveq12d 5792 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( Re
`  ( x  +  ( _i  x.  y
) ) )  +  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) ) ) )
127, 11eqeq12d 2154 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  <->  ( x  +  ( _i  x.  y ) )  =  ( ( Re `  ( x  +  (
_i  x.  y )
) )  +  ( _i  x.  ( Im
`  ( x  +  ( _i  x.  y
) ) ) ) ) ) )
136, 12syl5ibrcom 156 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  A  =  ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
1413rexlimivv 2555 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
151, 14syl 14 1  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E.wrex 2417   ` cfv 5123  (class class class)co 5774   CCcc 7630   RRcr 7631   _ici 7634    + caddc 7635    x. cmul 7637   Recre 10624   Imcim 10625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-2 8791  df-cj 10626  df-re 10627  df-im 10628
This theorem is referenced by:  remim  10644  reim0b  10646  rereb  10647  mulreap  10648  cjreb  10650  reneg  10652  readd  10653  remullem  10655  imneg  10660  imadd  10661  cjcj  10667  imval2  10678  cnrecnv  10694  replimi  10698  replimd  10725  cnreim  10762  abs00ap  10846  recan  10893  efeul  11452  absef  11487  absefib  11488  efieq1re  11489
  Copyright terms: Public domain W3C validator