ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  replim Unicode version

Theorem replim 10795
Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
replim  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )

Proof of Theorem replim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7889 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 crre 10793 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3 crim 10794 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
43oveq2d 5855 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) )  =  ( _i  x.  y ) )
52, 4oveq12d 5857 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) )  +  ( _i  x.  ( Im
`  ( x  +  ( _i  x.  y
) ) ) ) )  =  ( x  +  ( _i  x.  y ) ) )
65eqcomd 2170 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  =  ( ( Re `  ( x  +  ( _i  x.  y ) ) )  +  ( _i  x.  ( Im `  ( x  +  ( _i  x.  y ) ) ) ) ) )
7 id 19 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
8 fveq2 5483 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
Re `  A )  =  ( Re `  ( x  +  (
_i  x.  y )
) ) )
9 fveq2 5483 . . . . . . 7  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
Im `  A )  =  ( Im `  ( x  +  (
_i  x.  y )
) ) )
109oveq2d 5855 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
_i  x.  ( Im `  A ) )  =  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) ) )
118, 10oveq12d 5857 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( Re
`  ( x  +  ( _i  x.  y
) ) )  +  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) ) ) )
127, 11eqeq12d 2179 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  <->  ( x  +  ( _i  x.  y ) )  =  ( ( Re `  ( x  +  (
_i  x.  y )
) )  +  ( _i  x.  ( Im
`  ( x  +  ( _i  x.  y
) ) ) ) ) ) )
136, 12syl5ibrcom 156 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  A  =  ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
1413rexlimivv 2587 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
151, 14syl 14 1  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   E.wrex 2443   ` cfv 5185  (class class class)co 5839   CCcc 7745   RRcr 7746   _ici 7749    + caddc 7750    x. cmul 7752   Recre 10776   Imcim 10777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-mulrcl 7846  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-precex 7857  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-apti 7862  ax-pre-ltadd 7863  ax-pre-mulgt0 7864  ax-pre-mulext 7865
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2726  df-sbc 2950  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-mpt 4042  df-id 4268  df-po 4271  df-iso 4272  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-reap 8467  df-ap 8474  df-div 8563  df-2 8910  df-cj 10778  df-re 10779  df-im 10780
This theorem is referenced by:  remim  10796  reim0b  10798  rereb  10799  mulreap  10800  cjreb  10802  reneg  10804  readd  10805  remullem  10807  imneg  10812  imadd  10813  cjcj  10819  imval2  10830  cnrecnv  10846  replimi  10850  replimd  10877  cnreim  10914  abs00ap  10998  recan  11045  efeul  11669  absef  11704  absefib  11705  efieq1re  11706
  Copyright terms: Public domain W3C validator