ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  replim Unicode version

Theorem replim 11041
Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
replim  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )

Proof of Theorem replim
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8039 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 crre 11039 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
3 crim 11040 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
43oveq2d 5941 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) )  =  ( _i  x.  y ) )
52, 4oveq12d 5943 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( Re `  ( x  +  (
_i  x.  y )
) )  +  ( _i  x.  ( Im
`  ( x  +  ( _i  x.  y
) ) ) ) )  =  ( x  +  ( _i  x.  y ) ) )
65eqcomd 2202 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  =  ( ( Re `  ( x  +  ( _i  x.  y ) ) )  +  ( _i  x.  ( Im `  ( x  +  ( _i  x.  y ) ) ) ) ) )
7 id 19 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
8 fveq2 5561 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
Re `  A )  =  ( Re `  ( x  +  (
_i  x.  y )
) ) )
9 fveq2 5561 . . . . . . 7  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
Im `  A )  =  ( Im `  ( x  +  (
_i  x.  y )
) ) )
109oveq2d 5941 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
_i  x.  ( Im `  A ) )  =  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) ) )
118, 10oveq12d 5943 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( Re
`  ( x  +  ( _i  x.  y
) ) )  +  ( _i  x.  (
Im `  ( x  +  ( _i  x.  y ) ) ) ) ) )
127, 11eqeq12d 2211 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  <->  ( x  +  ( _i  x.  y ) )  =  ( ( Re `  ( x  +  (
_i  x.  y )
) )  +  ( _i  x.  ( Im
`  ( x  +  ( _i  x.  y
) ) ) ) ) ) )
136, 12syl5ibrcom 157 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  A  =  ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
1413rexlimivv 2620 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
151, 14syl 14 1  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   _ici 7898    + caddc 7899    x. cmul 7901   Recre 11022   Imcim 11023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066  df-cj 11024  df-re 11025  df-im 11026
This theorem is referenced by:  remim  11042  reim0b  11044  rereb  11045  mulreap  11046  cjreb  11048  reneg  11050  readd  11051  remullem  11053  imneg  11058  imadd  11059  cjcj  11065  imval2  11076  cnrecnv  11092  replimi  11096  replimd  11123  cnreim  11160  abs00ap  11244  recan  11291  efeul  11916  absef  11952  absefib  11953  efieq1re  11954
  Copyright terms: Public domain W3C validator