ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 7853
Description: Alias for ax-cnre 7822, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 7822 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 2125  wrex 2433  (class class class)co 5814  cc 7709  cr 7710  ici 7713   + caddc 7714   · cmul 7716
This theorem was proved from axioms:  ax-cnre 7822
This theorem is referenced by:  mulid1  7854  cnegexlem2  8030  cnegex  8032  apirr  8459  apsym  8460  apcotr  8461  apadd1  8462  apneg  8465  mulext1  8466  apti  8476  recexap  8506  creur  8809  creui  8810  cju  8811  cnref1o  9537  replim  10736  cjap  10783
  Copyright terms: Public domain W3C validator