ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 8041
Description: Alias for ax-cnre 8009, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 8009 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wrex 2476  (class class class)co 5925  cc 7896  cr 7897  ici 7900   + caddc 7901   · cmul 7903
This theorem was proved from axioms:  ax-cnre 8009
This theorem is referenced by:  mulrid  8042  cnegexlem2  8221  cnegex  8223  apirr  8651  apsym  8652  apcotr  8653  apadd1  8654  apneg  8657  mulext1  8658  apti  8668  recexap  8699  creur  9005  creui  9006  cju  9007  cnref1o  9744  replim  11043  cjap  11090
  Copyright terms: Public domain W3C validator