ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 7916
Description: Alias for ax-cnre 7885, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 7885 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wrex 2449  (class class class)co 5853  cc 7772  cr 7773  ici 7776   + caddc 7777   · cmul 7779
This theorem was proved from axioms:  ax-cnre 7885
This theorem is referenced by:  mulid1  7917  cnegexlem2  8095  cnegex  8097  apirr  8524  apsym  8525  apcotr  8526  apadd1  8527  apneg  8530  mulext1  8531  apti  8541  recexap  8571  creur  8875  creui  8876  cju  8877  cnref1o  9609  replim  10823  cjap  10870
  Copyright terms: Public domain W3C validator