ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 7895
Description: Alias for ax-cnre 7864, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 7864 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wrex 2445  (class class class)co 5842  cc 7751  cr 7752  ici 7755   + caddc 7756   · cmul 7758
This theorem was proved from axioms:  ax-cnre 7864
This theorem is referenced by:  mulid1  7896  cnegexlem2  8074  cnegex  8076  apirr  8503  apsym  8504  apcotr  8505  apadd1  8506  apneg  8509  mulext1  8510  apti  8520  recexap  8550  creur  8854  creui  8855  cju  8856  cnref1o  9588  replim  10801  cjap  10848
  Copyright terms: Public domain W3C validator