ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 8017
Description: Alias for ax-cnre 7985, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 7985 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wrex 2473  (class class class)co 5919  cc 7872  cr 7873  ici 7876   + caddc 7877   · cmul 7879
This theorem was proved from axioms:  ax-cnre 7985
This theorem is referenced by:  mulrid  8018  cnegexlem2  8197  cnegex  8199  apirr  8626  apsym  8627  apcotr  8628  apadd1  8629  apneg  8632  mulext1  8633  apti  8643  recexap  8674  creur  8980  creui  8981  cju  8982  cnref1o  9719  replim  11006  cjap  11053
  Copyright terms: Public domain W3C validator