ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 8150
Description: Alias for ax-cnre 8118, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 8118 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wrex 2509  (class class class)co 6007  cc 8005  cr 8006  ici 8009   + caddc 8010   · cmul 8012
This theorem was proved from axioms:  ax-cnre 8118
This theorem is referenced by:  mulrid  8151  cnegexlem2  8330  cnegex  8332  apirr  8760  apsym  8761  apcotr  8762  apadd1  8763  apneg  8766  mulext1  8767  apti  8777  recexap  8808  creur  9114  creui  9115  cju  9116  cnref1o  9854  replim  11378  cjap  11425
  Copyright terms: Public domain W3C validator