ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 8068
Description: Alias for ax-cnre 8036, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 8036 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  wrex 2485  (class class class)co 5944  cc 7923  cr 7924  ici 7927   + caddc 7928   · cmul 7930
This theorem was proved from axioms:  ax-cnre 8036
This theorem is referenced by:  mulrid  8069  cnegexlem2  8248  cnegex  8250  apirr  8678  apsym  8679  apcotr  8680  apadd1  8681  apneg  8684  mulext1  8685  apti  8695  recexap  8726  creur  9032  creui  9033  cju  9034  cnref1o  9772  replim  11170  cjap  11217
  Copyright terms: Public domain W3C validator