ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 8103
Description: Alias for ax-cnre 8071, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 8071 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  wrex 2487  (class class class)co 5967  cc 7958  cr 7959  ici 7962   + caddc 7963   · cmul 7965
This theorem was proved from axioms:  ax-cnre 8071
This theorem is referenced by:  mulrid  8104  cnegexlem2  8283  cnegex  8285  apirr  8713  apsym  8714  apcotr  8715  apadd1  8716  apneg  8719  mulext1  8720  apti  8730  recexap  8761  creur  9067  creui  9068  cju  9069  cnref1o  9807  replim  11285  cjap  11332
  Copyright terms: Public domain W3C validator