ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnre GIF version

Theorem cnre 8022
Description: Alias for ax-cnre 7990, for naming consistency. (Contributed by NM, 3-Jan-2013.)
Assertion
Ref Expression
cnre (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 7990 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wrex 2476  (class class class)co 5922  cc 7877  cr 7878  ici 7881   + caddc 7882   · cmul 7884
This theorem was proved from axioms:  ax-cnre 7990
This theorem is referenced by:  mulrid  8023  cnegexlem2  8202  cnegex  8204  apirr  8632  apsym  8633  apcotr  8634  apadd1  8635  apneg  8638  mulext1  8639  apti  8649  recexap  8680  creur  8986  creui  8987  cju  8988  cnref1o  9725  replim  11024  cjap  11071
  Copyright terms: Public domain W3C validator