![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1ex | Unicode version |
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1ex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7965 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elexi 2772 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 ax-1cn 7965 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: nn1suc 9001 nn0ind-raph 9434 fzprval 10148 fztpval 10149 m1expcl2 10632 1exp 10639 facnn 10798 fac0 10799 prhash2ex 10880 prodf1f 11686 fprodntrivap 11727 prod1dc 11729 fprodssdc 11733 ege2le3 11814 1nprm 12252 pcmpt 12481 dvexp 14860 dvef 14873 lgsdir2lem3 15146 2o01f 15487 iswomni0 15541 |
Copyright terms: Public domain | W3C validator |