ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulext1 Unicode version

Theorem mulext1 8755
Description: Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulext1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )

Proof of Theorem mulext1
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8138 . . 3  |-  ( C  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v ) ) )
213ad2ant3 1044 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v ) ) )
3 cnre 8138 . . . . . . 7  |-  ( B  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
433ad2ant2 1043 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
54ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
6 cnre 8138 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
763ad2ant1 1042 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
87adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
98ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
10 simplrl 535 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  x  e.  RR )
1110recnd 8171 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  x  e.  CC )
12 simprl 529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  u  e.  RR )
1312ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  u  e.  RR )
1413ad3antrrr 492 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  u  e.  RR )
1514recnd 8171 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  u  e.  CC )
1611, 15mulcld 8163 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x  x.  u )  e.  CC )
17 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  y  e.  RR )
1817recnd 8171 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  y  e.  CC )
19 simprr 531 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  v  e.  RR )
2019ad2antrr 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  v  e.  RR )
2120ad3antrrr 492 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  v  e.  RR )
2221recnd 8171 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  v  e.  CC )
2318, 22mulcld 8163 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y  x.  v )  e.  CC )
2423negcld 8440 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  -u (
y  x.  v )  e.  CC )
25 simprl 529 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  z  e.  RR )
2625ad3antrrr 492 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  z  e.  RR )
2726recnd 8171 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  z  e.  CC )
2827, 15mulcld 8163 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z  x.  u )  e.  CC )
29 simprr 531 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  w  e.  RR )
3029ad3antrrr 492 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  w  e.  RR )
3130recnd 8171 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  w  e.  CC )
3231, 22mulcld 8163 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w  x.  v )  e.  CC )
3332negcld 8440 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  -u (
w  x.  v )  e.  CC )
34 addext 8753 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  x.  u )  e.  CC  /\  -u ( y  x.  v
)  e.  CC )  /\  ( ( z  x.  u )  e.  CC  /\  -u (
w  x.  v )  e.  CC ) )  ->  ( ( ( x  x.  u )  +  -u ( y  x.  v ) ) #  ( ( z  x.  u
)  +  -u (
w  x.  v ) )  ->  ( (
x  x.  u ) #  ( z  x.  u
)  \/  -u (
y  x.  v ) #  -u ( w  x.  v
) ) ) )
3516, 24, 28, 33, 34syl22anc 1272 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( x  x.  u )  +  -u ( y  x.  v
) ) #  ( ( z  x.  u )  +  -u ( w  x.  v ) )  -> 
( ( x  x.  u ) #  ( z  x.  u )  \/  -u ( y  x.  v
) #  -u ( w  x.  v ) ) ) )
36 remulext1 8742 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  z  e.  RR  /\  u  e.  RR )  ->  (
( x  x.  u
) #  ( z  x.  u )  ->  x #  z ) )
3710, 26, 14, 36syl3anc 1271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  x.  u
) #  ( z  x.  u )  ->  x #  z ) )
38 apneg 8754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  x.  v
)  e.  CC  /\  ( w  x.  v
)  e.  CC )  ->  ( ( y  x.  v ) #  ( w  x.  v )  <->  -u ( y  x.  v
) #  -u ( w  x.  v ) ) )
3923, 32, 38syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( y  x.  v
) #  ( w  x.  v )  <->  -u ( y  x.  v ) #  -u ( w  x.  v
) ) )
40 remulext1 8742 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  w  e.  RR  /\  v  e.  RR )  ->  (
( y  x.  v
) #  ( w  x.  v )  ->  y #  w ) )
4117, 30, 21, 40syl3anc 1271 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( y  x.  v
) #  ( w  x.  v )  ->  y #  w ) )
4239, 41sylbird 170 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( -u ( y  x.  v
) #  -u ( w  x.  v )  ->  y #  w ) )
4337, 42orim12d 791 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( x  x.  u ) #  ( z  x.  u )  \/  -u ( y  x.  v
) #  -u ( w  x.  v ) )  -> 
( x #  z  \/  y #  w ) ) )
4435, 43syld 45 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( x  x.  u )  +  -u ( y  x.  v
) ) #  ( ( z  x.  u )  +  -u ( w  x.  v ) )  -> 
( x #  z  \/  y #  w ) ) )
4515, 18mulcld 8163 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
u  x.  y )  e.  CC )
4622, 11mulcld 8163 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
v  x.  x )  e.  CC )
4715, 31mulcld 8163 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
u  x.  w )  e.  CC )
4822, 27mulcld 8163 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
v  x.  z )  e.  CC )
49 addext 8753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( u  x.  y )  e.  CC  /\  ( v  x.  x
)  e.  CC )  /\  ( ( u  x.  w )  e.  CC  /\  ( v  x.  z )  e.  CC ) )  -> 
( ( ( u  x.  y )  +  ( v  x.  x
) ) #  ( ( u  x.  w )  +  ( v  x.  z ) )  -> 
( ( u  x.  y ) #  ( u  x.  w )  \/  ( v  x.  x
) #  ( v  x.  z ) ) ) )
5045, 46, 47, 48, 49syl22anc 1272 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) )  ->  (
( u  x.  y
) #  ( u  x.  w )  \/  (
v  x.  x ) #  ( v  x.  z
) ) ) )
51 remulext2 8743 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  w  e.  RR  /\  u  e.  RR )  ->  (
( u  x.  y
) #  ( u  x.  w )  ->  y #  w ) )
5217, 30, 14, 51syl3anc 1271 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( u  x.  y
) #  ( u  x.  w )  ->  y #  w ) )
53 remulext2 8743 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  z  e.  RR  /\  v  e.  RR )  ->  (
( v  x.  x
) #  ( v  x.  z )  ->  x #  z ) )
5410, 26, 21, 53syl3anc 1271 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( v  x.  x
) #  ( v  x.  z )  ->  x #  z ) )
5552, 54orim12d 791 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( u  x.  y ) #  ( u  x.  w )  \/  ( v  x.  x
) #  ( v  x.  z ) )  -> 
( y #  w  \/  x #  z ) ) )
5650, 55syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) )  ->  (
y #  w  \/  x #  z ) ) )
57 orcom 733 . . . . . . . . . . . . . 14  |-  ( ( y #  w  \/  x #  z )  <->  ( x #  z  \/  y #  w
) )
5856, 57imbitrdi 161 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) )  ->  (
x #  z  \/  y #  w ) ) )
5944, 58jaod 722 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( ( x  x.  u )  + 
-u ( y  x.  v ) ) #  ( ( z  x.  u
)  +  -u (
w  x.  v ) )  \/  ( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w
)  +  ( v  x.  z ) ) )  ->  ( x #  z  \/  y #  w
) ) )
60 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
61 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  C  =  ( u  +  (
_i  x.  v )
) )
6261ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  C  =  ( u  +  ( _i  x.  v
) ) )
6360, 62oveq12d 6018 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A  x.  C )  =  ( ( x  +  ( _i  x.  y ) )  x.  ( u  +  ( _i  x.  v ) ) ) )
64 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  B  =  ( z  +  ( _i  x.  w
) ) )
6564, 62oveq12d 6018 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( B  x.  C )  =  ( ( z  +  ( _i  x.  w ) )  x.  ( u  +  ( _i  x.  v ) ) ) )
6663, 65breq12d 4095 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  <->  ( (
x  +  ( _i  x.  y ) )  x.  ( u  +  ( _i  x.  v
) ) ) #  ( ( z  +  ( _i  x.  w ) )  x.  ( u  +  ( _i  x.  v ) ) ) ) )
67 mulreim 8747 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  x.  (
u  +  ( _i  x.  v ) ) )  =  ( ( ( x  x.  u
)  +  -u (
y  x.  v ) )  +  ( _i  x.  ( ( u  x.  y )  +  ( v  x.  x
) ) ) ) )
6810, 17, 14, 21, 67syl22anc 1272 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) )  x.  ( u  +  ( _i  x.  v ) ) )  =  ( ( ( x  x.  u )  +  -u ( y  x.  v ) )  +  ( _i  x.  (
( u  x.  y
)  +  ( v  x.  x ) ) ) ) )
69 mulreim 8747 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) )  x.  (
u  +  ( _i  x.  v ) ) )  =  ( ( ( z  x.  u
)  +  -u (
w  x.  v ) )  +  ( _i  x.  ( ( u  x.  w )  +  ( v  x.  z
) ) ) ) )
7026, 30, 14, 21, 69syl22anc 1272 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( z  +  ( _i  x.  w ) )  x.  ( u  +  ( _i  x.  v ) ) )  =  ( ( ( z  x.  u )  +  -u ( w  x.  v ) )  +  ( _i  x.  (
( u  x.  w
)  +  ( v  x.  z ) ) ) ) )
7168, 70breq12d 4095 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( x  +  ( _i  x.  y
) )  x.  (
u  +  ( _i  x.  v ) ) ) #  ( ( z  +  ( _i  x.  w ) )  x.  ( u  +  ( _i  x.  v ) ) )  <->  ( (
( x  x.  u
)  +  -u (
y  x.  v ) )  +  ( _i  x.  ( ( u  x.  y )  +  ( v  x.  x
) ) ) ) #  ( ( ( z  x.  u )  + 
-u ( w  x.  v ) )  +  ( _i  x.  (
( u  x.  w
)  +  ( v  x.  z ) ) ) ) ) )
7210, 14remulcld 8173 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x  x.  u )  e.  RR )
7317, 21remulcld 8173 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y  x.  v )  e.  RR )
7473renegcld 8522 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  -u (
y  x.  v )  e.  RR )
7572, 74readdcld 8172 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  x.  u
)  +  -u (
y  x.  v ) )  e.  RR )
7614, 17remulcld 8173 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
u  x.  y )  e.  RR )
7721, 10remulcld 8173 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
v  x.  x )  e.  RR )
7876, 77readdcld 8172 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( u  x.  y
)  +  ( v  x.  x ) )  e.  RR )
7926, 14remulcld 8173 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z  x.  u )  e.  RR )
8030, 21remulcld 8173 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w  x.  v )  e.  RR )
8180renegcld 8522 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  -u (
w  x.  v )  e.  RR )
8279, 81readdcld 8172 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( z  x.  u
)  +  -u (
w  x.  v ) )  e.  RR )
8314, 30remulcld 8173 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
u  x.  w )  e.  RR )
8421, 26remulcld 8173 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
v  x.  z )  e.  RR )
8583, 84readdcld 8172 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( u  x.  w
)  +  ( v  x.  z ) )  e.  RR )
86 apreim 8746 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  x.  u )  + 
-u ( y  x.  v ) )  e.  RR  /\  ( ( u  x.  y )  +  ( v  x.  x ) )  e.  RR )  /\  (
( ( z  x.  u )  +  -u ( w  x.  v
) )  e.  RR  /\  ( ( u  x.  w )  +  ( v  x.  z ) )  e.  RR ) )  ->  ( (
( ( x  x.  u )  +  -u ( y  x.  v
) )  +  ( _i  x.  ( ( u  x.  y )  +  ( v  x.  x ) ) ) ) #  ( ( ( z  x.  u )  +  -u ( w  x.  v ) )  +  ( _i  x.  (
( u  x.  w
)  +  ( v  x.  z ) ) ) )  <->  ( (
( x  x.  u
)  +  -u (
y  x.  v ) ) #  ( ( z  x.  u )  + 
-u ( w  x.  v ) )  \/  ( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) ) ) ) )
8775, 78, 82, 85, 86syl22anc 1272 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( ( ( x  x.  u )  + 
-u ( y  x.  v ) )  +  ( _i  x.  (
( u  x.  y
)  +  ( v  x.  x ) ) ) ) #  ( ( ( z  x.  u
)  +  -u (
w  x.  v ) )  +  ( _i  x.  ( ( u  x.  w )  +  ( v  x.  z
) ) ) )  <-> 
( ( ( x  x.  u )  + 
-u ( y  x.  v ) ) #  ( ( z  x.  u
)  +  -u (
w  x.  v ) )  \/  ( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w
)  +  ( v  x.  z ) ) ) ) )
8866, 71, 873bitrd 214 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  <->  ( (
( x  x.  u
)  +  -u (
y  x.  v ) ) #  ( ( z  x.  u )  + 
-u ( w  x.  v ) )  \/  ( ( u  x.  y )  +  ( v  x.  x ) ) #  ( ( u  x.  w )  +  ( v  x.  z
) ) ) ) )
89 apreim 8746 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) )  <->  ( x #  z  \/  y #  w
) ) )
9010, 17, 26, 30, 89syl22anc 1272 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( x #  z  \/  y #  w
) ) )
9159, 88, 903imtr4d 203 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  (
x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w ) ) ) )
9260, 64breq12d 4095 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) ) ) )
9391, 92sylibrd 169 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
9493ex 115 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  /\  C  =  ( u  +  ( _i  x.  v ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
9594rexlimdvva 2656 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
969, 95mpd 13 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
9796ex 115 . . . . . 6  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  ( B  =  ( z  +  ( _i  x.  w
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
9897rexlimdvva 2656 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  ( E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
995, 98mpd 13 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
10099ex 115 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  ( C  =  ( u  +  ( _i  x.  v
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
101100rexlimdvva 2656 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v
) )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) ) )
1022, 101mpd 13 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   CCcc 7993   RRcr 7994   _ici 7997    + caddc 7998    x. cmul 8000   -ucneg 8314   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by:  mulext2  8756  mulext  8757  mulap0  8797  apmul1  8931
  Copyright terms: Public domain W3C validator