Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cjap | Unicode version |
Description: Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.) |
Ref | Expression |
---|---|
cjap | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7887 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | cnre 7887 | . . . . . 6 | |
4 | 3 | ad3antlr 485 | . . . . 5 |
5 | simplrr 526 | . . . . . . . . . . . 12 | |
6 | 5 | ad2antrr 480 | . . . . . . . . . . 11 |
7 | 6 | recnd 7919 | . . . . . . . . . 10 |
8 | simplrr 526 | . . . . . . . . . . 11 | |
9 | 8 | recnd 7919 | . . . . . . . . . 10 |
10 | apneg 8501 | . . . . . . . . . 10 # # | |
11 | 7, 9, 10 | syl2anc 409 | . . . . . . . . 9 # # |
12 | 11 | orbi2d 780 | . . . . . . . 8 # # # # |
13 | simpllr 524 | . . . . . . . . . 10 | |
14 | simpr 109 | . . . . . . . . . 10 | |
15 | 13, 14 | breq12d 3990 | . . . . . . . . 9 # # |
16 | simplrl 525 | . . . . . . . . . . 11 | |
17 | 16 | ad2antrr 480 | . . . . . . . . . 10 |
18 | simplrl 525 | . . . . . . . . . 10 | |
19 | apreim 8493 | . . . . . . . . . 10 # # # | |
20 | 17, 6, 18, 8, 19 | syl22anc 1228 | . . . . . . . . 9 # # # |
21 | 15, 20 | bitrd 187 | . . . . . . . 8 # # # |
22 | 13 | fveq2d 5485 | . . . . . . . . . . 11 |
23 | cjreim 10835 | . . . . . . . . . . . 12 | |
24 | 17, 6, 23 | syl2anc 409 | . . . . . . . . . . 11 |
25 | 22, 24 | eqtrd 2197 | . . . . . . . . . 10 |
26 | 14 | fveq2d 5485 | . . . . . . . . . . 11 |
27 | cjreim 10835 | . . . . . . . . . . . 12 | |
28 | 18, 8, 27 | syl2anc 409 | . . . . . . . . . . 11 |
29 | 26, 28 | eqtrd 2197 | . . . . . . . . . 10 |
30 | 25, 29 | breq12d 3990 | . . . . . . . . 9 # # |
31 | 17 | recnd 7919 | . . . . . . . . . . 11 |
32 | ax-icn 7840 | . . . . . . . . . . . 12 | |
33 | 32 | a1i 9 | . . . . . . . . . . 11 |
34 | submul2 8289 | . . . . . . . . . . 11 | |
35 | 31, 33, 7, 34 | syl3anc 1227 | . . . . . . . . . 10 |
36 | 18 | recnd 7919 | . . . . . . . . . . 11 |
37 | submul2 8289 | . . . . . . . . . . 11 | |
38 | 36, 33, 9, 37 | syl3anc 1227 | . . . . . . . . . 10 |
39 | 35, 38 | breq12d 3990 | . . . . . . . . 9 # # |
40 | 6 | renegcld 8270 | . . . . . . . . . 10 |
41 | 8 | renegcld 8270 | . . . . . . . . . 10 |
42 | apreim 8493 | . . . . . . . . . 10 # # # | |
43 | 17, 40, 18, 41, 42 | syl22anc 1228 | . . . . . . . . 9 # # # |
44 | 30, 39, 43 | 3bitrd 213 | . . . . . . . 8 # # # |
45 | 12, 21, 44 | 3bitr4rd 220 | . . . . . . 7 # # |
46 | 45 | ex 114 | . . . . . 6 # # |
47 | 46 | rexlimdvva 2589 | . . . . 5 # # |
48 | 4, 47 | mpd 13 | . . . 4 # # |
49 | 48 | ex 114 | . . 3 # # |
50 | 49 | rexlimdvva 2589 | . 2 # # |
51 | 2, 50 | mpd 13 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1342 wcel 2135 wrex 2443 class class class wbr 3977 cfv 5183 (class class class)co 5837 cc 7743 cr 7744 ci 7747 caddc 7748 cmul 7750 cmin 8061 cneg 8062 # cap 8471 ccj 10771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-po 4269 df-iso 4270 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-2 8908 df-cj 10774 df-re 10775 df-im 10776 |
This theorem is referenced by: cjap0 10839 |
Copyright terms: Public domain | W3C validator |