| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| mulrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8138 |
. 2
| |
| 2 | recn 8128 |
. . . . . 6
| |
| 3 | ax-icn 8090 |
. . . . . . 7
| |
| 4 | recn 8128 |
. . . . . . 7
| |
| 5 | mulcl 8122 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . 6
|
| 7 | ax-1cn 8088 |
. . . . . . 7
| |
| 8 | adddir 8133 |
. . . . . . 7
| |
| 9 | 7, 8 | mp3an3 1360 |
. . . . . 6
|
| 10 | 2, 6, 9 | syl2an 289 |
. . . . 5
|
| 11 | ax-1rid 8102 |
. . . . . 6
| |
| 12 | mulass 8126 |
. . . . . . . . 9
| |
| 13 | 3, 7, 12 | mp3an13 1362 |
. . . . . . . 8
|
| 14 | 4, 13 | syl 14 |
. . . . . . 7
|
| 15 | ax-1rid 8102 |
. . . . . . . 8
| |
| 16 | 15 | oveq2d 6016 |
. . . . . . 7
|
| 17 | 14, 16 | eqtrd 2262 |
. . . . . 6
|
| 18 | 11, 17 | oveqan12d 6019 |
. . . . 5
|
| 19 | 10, 18 | eqtrd 2262 |
. . . 4
|
| 20 | oveq1 6007 |
. . . . 5
| |
| 21 | id 19 |
. . . . 5
| |
| 22 | 20, 21 | eqeq12d 2244 |
. . . 4
|
| 23 | 19, 22 | syl5ibrcom 157 |
. . 3
|
| 24 | 23 | rexlimivv 2654 |
. 2
|
| 25 | 1, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: mullid 8140 mulridi 8144 mulridd 8159 muleqadd 8811 divdivap1 8866 conjmulap 8872 nnmulcl 9127 expmul 10801 binom21 10869 binom2sub1 10871 bernneq 10877 hashiun 11984 fproddccvg 12078 prodmodclem2a 12082 efexp 12188 cncrng 14527 cnfld1 14530 ecxp 15569 lgsdilem2 15709 |
| Copyright terms: Public domain | W3C validator |