| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| mulrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8098 |
. 2
| |
| 2 | recn 8088 |
. . . . . 6
| |
| 3 | ax-icn 8050 |
. . . . . . 7
| |
| 4 | recn 8088 |
. . . . . . 7
| |
| 5 | mulcl 8082 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . 6
|
| 7 | ax-1cn 8048 |
. . . . . . 7
| |
| 8 | adddir 8093 |
. . . . . . 7
| |
| 9 | 7, 8 | mp3an3 1339 |
. . . . . 6
|
| 10 | 2, 6, 9 | syl2an 289 |
. . . . 5
|
| 11 | ax-1rid 8062 |
. . . . . 6
| |
| 12 | mulass 8086 |
. . . . . . . . 9
| |
| 13 | 3, 7, 12 | mp3an13 1341 |
. . . . . . . 8
|
| 14 | 4, 13 | syl 14 |
. . . . . . 7
|
| 15 | ax-1rid 8062 |
. . . . . . . 8
| |
| 16 | 15 | oveq2d 5978 |
. . . . . . 7
|
| 17 | 14, 16 | eqtrd 2239 |
. . . . . 6
|
| 18 | 11, 17 | oveqan12d 5981 |
. . . . 5
|
| 19 | 10, 18 | eqtrd 2239 |
. . . 4
|
| 20 | oveq1 5969 |
. . . . 5
| |
| 21 | id 19 |
. . . . 5
| |
| 22 | 20, 21 | eqeq12d 2221 |
. . . 4
|
| 23 | 19, 22 | syl5ibrcom 157 |
. . 3
|
| 24 | 23 | rexlimivv 2630 |
. 2
|
| 25 | 1, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8047 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-mulcl 8053 ax-mulcom 8056 ax-mulass 8058 ax-distr 8059 ax-1rid 8062 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 |
| This theorem is referenced by: mullid 8100 mulridi 8104 mulridd 8119 muleqadd 8771 divdivap1 8826 conjmulap 8832 nnmulcl 9087 expmul 10761 binom21 10829 binom2sub1 10831 bernneq 10837 hashiun 11874 fproddccvg 11968 prodmodclem2a 11972 efexp 12078 cncrng 14416 cnfld1 14419 ecxp 15458 lgsdilem2 15598 |
| Copyright terms: Public domain | W3C validator |