Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulrid | Unicode version |
Description: Utility theorem: index-independent form of df-mulr 12277. (Contributed by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
mulrid | Slot |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mulr 12277 | . 2 Slot | |
2 | 3nn 8995 | . 2 | |
3 | 1, 2 | ndxid 12225 | 1 Slot |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cfv 5170 c3 8885 cnx 12198 Slot cslot 12200 cmulr 12264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-cnex 7823 ax-resscn 7824 ax-1re 7826 ax-addrcl 7829 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-iota 5135 df-fun 5172 df-fv 5178 df-ov 5827 df-inn 8834 df-2 8892 df-3 8893 df-ndx 12204 df-slot 12205 df-mulr 12277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |