| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| mulrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8039 |
. 2
| |
| 2 | recn 8029 |
. . . . . 6
| |
| 3 | ax-icn 7991 |
. . . . . . 7
| |
| 4 | recn 8029 |
. . . . . . 7
| |
| 5 | mulcl 8023 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . 6
|
| 7 | ax-1cn 7989 |
. . . . . . 7
| |
| 8 | adddir 8034 |
. . . . . . 7
| |
| 9 | 7, 8 | mp3an3 1337 |
. . . . . 6
|
| 10 | 2, 6, 9 | syl2an 289 |
. . . . 5
|
| 11 | ax-1rid 8003 |
. . . . . 6
| |
| 12 | mulass 8027 |
. . . . . . . . 9
| |
| 13 | 3, 7, 12 | mp3an13 1339 |
. . . . . . . 8
|
| 14 | 4, 13 | syl 14 |
. . . . . . 7
|
| 15 | ax-1rid 8003 |
. . . . . . . 8
| |
| 16 | 15 | oveq2d 5941 |
. . . . . . 7
|
| 17 | 14, 16 | eqtrd 2229 |
. . . . . 6
|
| 18 | 11, 17 | oveqan12d 5944 |
. . . . 5
|
| 19 | 10, 18 | eqtrd 2229 |
. . . 4
|
| 20 | oveq1 5932 |
. . . . 5
| |
| 21 | id 19 |
. . . . 5
| |
| 22 | 20, 21 | eqeq12d 2211 |
. . . 4
|
| 23 | 19, 22 | syl5ibrcom 157 |
. . 3
|
| 24 | 23 | rexlimivv 2620 |
. 2
|
| 25 | 1, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-mulcom 7997 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: mullid 8041 mulridi 8045 mulridd 8060 muleqadd 8712 divdivap1 8767 conjmulap 8773 nnmulcl 9028 expmul 10693 binom21 10761 binom2sub1 10763 bernneq 10769 hashiun 11660 fproddccvg 11754 prodmodclem2a 11758 efexp 11864 cncrng 14201 cnfld1 14204 ecxp 15221 lgsdilem2 15361 |
| Copyright terms: Public domain | W3C validator |