| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| mulrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8041 |
. 2
| |
| 2 | recn 8031 |
. . . . . 6
| |
| 3 | ax-icn 7993 |
. . . . . . 7
| |
| 4 | recn 8031 |
. . . . . . 7
| |
| 5 | mulcl 8025 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . 6
|
| 7 | ax-1cn 7991 |
. . . . . . 7
| |
| 8 | adddir 8036 |
. . . . . . 7
| |
| 9 | 7, 8 | mp3an3 1337 |
. . . . . 6
|
| 10 | 2, 6, 9 | syl2an 289 |
. . . . 5
|
| 11 | ax-1rid 8005 |
. . . . . 6
| |
| 12 | mulass 8029 |
. . . . . . . . 9
| |
| 13 | 3, 7, 12 | mp3an13 1339 |
. . . . . . . 8
|
| 14 | 4, 13 | syl 14 |
. . . . . . 7
|
| 15 | ax-1rid 8005 |
. . . . . . . 8
| |
| 16 | 15 | oveq2d 5941 |
. . . . . . 7
|
| 17 | 14, 16 | eqtrd 2229 |
. . . . . 6
|
| 18 | 11, 17 | oveqan12d 5944 |
. . . . 5
|
| 19 | 10, 18 | eqtrd 2229 |
. . . 4
|
| 20 | oveq1 5932 |
. . . . 5
| |
| 21 | id 19 |
. . . . 5
| |
| 22 | 20, 21 | eqeq12d 2211 |
. . . 4
|
| 23 | 19, 22 | syl5ibrcom 157 |
. . 3
|
| 24 | 23 | rexlimivv 2620 |
. 2
|
| 25 | 1, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-mulcom 7999 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: mullid 8043 mulridi 8047 mulridd 8062 muleqadd 8714 divdivap1 8769 conjmulap 8775 nnmulcl 9030 expmul 10695 binom21 10763 binom2sub1 10765 bernneq 10771 hashiun 11662 fproddccvg 11756 prodmodclem2a 11760 efexp 11866 cncrng 14203 cnfld1 14206 ecxp 15245 lgsdilem2 15385 |
| Copyright terms: Public domain | W3C validator |