ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulrid Unicode version

Theorem mulrid 7954
Description:  1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mulrid  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )

Proof of Theorem mulrid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7953 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 recn 7944 . . . . . 6  |-  ( x  e.  RR  ->  x  e.  CC )
3 ax-icn 7906 . . . . . . 7  |-  _i  e.  CC
4 recn 7944 . . . . . . 7  |-  ( y  e.  RR  ->  y  e.  CC )
5 mulcl 7938 . . . . . . 7  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
63, 4, 5sylancr 414 . . . . . 6  |-  ( y  e.  RR  ->  (
_i  x.  y )  e.  CC )
7 ax-1cn 7904 . . . . . . 7  |-  1  e.  CC
8 adddir 7948 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  1  e.  CC )  ->  ( ( x  +  ( _i  x.  y
) )  x.  1 )  =  ( ( x  x.  1 )  +  ( ( _i  x.  y )  x.  1 ) ) )
97, 8mp3an3 1326 . . . . . 6  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( ( x  +  ( _i  x.  y ) )  x.  1 )  =  ( ( x  x.  1 )  +  ( ( _i  x.  y )  x.  1 ) ) )
102, 6, 9syl2an 289 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( _i  x.  y
) )  x.  1 )  =  ( ( x  x.  1 )  +  ( ( _i  x.  y )  x.  1 ) ) )
11 ax-1rid 7918 . . . . . 6  |-  ( x  e.  RR  ->  (
x  x.  1 )  =  x )
12 mulass 7942 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  y  e.  CC  /\  1  e.  CC )  ->  (
( _i  x.  y
)  x.  1 )  =  ( _i  x.  ( y  x.  1 ) ) )
133, 7, 12mp3an13 1328 . . . . . . . 8  |-  ( y  e.  CC  ->  (
( _i  x.  y
)  x.  1 )  =  ( _i  x.  ( y  x.  1 ) ) )
144, 13syl 14 . . . . . . 7  |-  ( y  e.  RR  ->  (
( _i  x.  y
)  x.  1 )  =  ( _i  x.  ( y  x.  1 ) ) )
15 ax-1rid 7918 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  x.  1 )  =  y )
1615oveq2d 5891 . . . . . . 7  |-  ( y  e.  RR  ->  (
_i  x.  ( y  x.  1 ) )  =  ( _i  x.  y
) )
1714, 16eqtrd 2210 . . . . . 6  |-  ( y  e.  RR  ->  (
( _i  x.  y
)  x.  1 )  =  ( _i  x.  y ) )
1811, 17oveqan12d 5894 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  x.  1 )  +  ( ( _i  x.  y
)  x.  1 ) )  =  ( x  +  ( _i  x.  y ) ) )
1910, 18eqtrd 2210 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( _i  x.  y
) )  x.  1 )  =  ( x  +  ( _i  x.  y ) ) )
20 oveq1 5882 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A  x.  1 )  =  ( ( x  +  ( _i  x.  y ) )  x.  1 ) )
21 id 19 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
2220, 21eqeq12d 2192 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( A  x.  1 )  =  A  <->  ( (
x  +  ( _i  x.  y ) )  x.  1 )  =  ( x  +  ( _i  x.  y ) ) ) )
2319, 22syl5ibrcom 157 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  ( A  x.  1 )  =  A ) )
2423rexlimivv 2600 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  ( A  x.  1 )  =  A )
251, 24syl 14 1  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456  (class class class)co 5875   CCcc 7809   RRcr 7810   1c1 7812   _ici 7813    + caddc 7814    x. cmul 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7903  ax-1cn 7904  ax-icn 7906  ax-addcl 7907  ax-mulcl 7909  ax-mulcom 7912  ax-mulass 7914  ax-distr 7915  ax-1rid 7918  ax-cnre 7922
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878
This theorem is referenced by:  mullid  7955  mulid1i  7959  mulridd  7974  muleqadd  8625  divdivap1  8680  conjmulap  8686  nnmulcl  8940  expmul  10565  binom21  10633  binom2sub1  10635  bernneq  10641  hashiun  11486  fproddccvg  11580  prodmodclem2a  11584  efexp  11690  cncrng  13466  cnfld1  13469  ecxp  14325  lgsdilem2  14440
  Copyright terms: Public domain W3C validator