| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| mulrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8022 |
. 2
| |
| 2 | recn 8012 |
. . . . . 6
| |
| 3 | ax-icn 7974 |
. . . . . . 7
| |
| 4 | recn 8012 |
. . . . . . 7
| |
| 5 | mulcl 8006 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . 6
|
| 7 | ax-1cn 7972 |
. . . . . . 7
| |
| 8 | adddir 8017 |
. . . . . . 7
| |
| 9 | 7, 8 | mp3an3 1337 |
. . . . . 6
|
| 10 | 2, 6, 9 | syl2an 289 |
. . . . 5
|
| 11 | ax-1rid 7986 |
. . . . . 6
| |
| 12 | mulass 8010 |
. . . . . . . . 9
| |
| 13 | 3, 7, 12 | mp3an13 1339 |
. . . . . . . 8
|
| 14 | 4, 13 | syl 14 |
. . . . . . 7
|
| 15 | ax-1rid 7986 |
. . . . . . . 8
| |
| 16 | 15 | oveq2d 5938 |
. . . . . . 7
|
| 17 | 14, 16 | eqtrd 2229 |
. . . . . 6
|
| 18 | 11, 17 | oveqan12d 5941 |
. . . . 5
|
| 19 | 10, 18 | eqtrd 2229 |
. . . 4
|
| 20 | oveq1 5929 |
. . . . 5
| |
| 21 | id 19 |
. . . . 5
| |
| 22 | 20, 21 | eqeq12d 2211 |
. . . 4
|
| 23 | 19, 22 | syl5ibrcom 157 |
. . 3
|
| 24 | 23 | rexlimivv 2620 |
. 2
|
| 25 | 1, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-mulcom 7980 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: mullid 8024 mulridi 8028 mulridd 8043 muleqadd 8695 divdivap1 8750 conjmulap 8756 nnmulcl 9011 expmul 10676 binom21 10744 binom2sub1 10746 bernneq 10752 hashiun 11643 fproddccvg 11737 prodmodclem2a 11741 efexp 11847 cncrng 14125 cnfld1 14128 ecxp 15137 lgsdilem2 15277 |
| Copyright terms: Public domain | W3C validator |