| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrid | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| mulrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8067 |
. 2
| |
| 2 | recn 8057 |
. . . . . 6
| |
| 3 | ax-icn 8019 |
. . . . . . 7
| |
| 4 | recn 8057 |
. . . . . . 7
| |
| 5 | mulcl 8051 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . 6
|
| 7 | ax-1cn 8017 |
. . . . . . 7
| |
| 8 | adddir 8062 |
. . . . . . 7
| |
| 9 | 7, 8 | mp3an3 1338 |
. . . . . 6
|
| 10 | 2, 6, 9 | syl2an 289 |
. . . . 5
|
| 11 | ax-1rid 8031 |
. . . . . 6
| |
| 12 | mulass 8055 |
. . . . . . . . 9
| |
| 13 | 3, 7, 12 | mp3an13 1340 |
. . . . . . . 8
|
| 14 | 4, 13 | syl 14 |
. . . . . . 7
|
| 15 | ax-1rid 8031 |
. . . . . . . 8
| |
| 16 | 15 | oveq2d 5959 |
. . . . . . 7
|
| 17 | 14, 16 | eqtrd 2237 |
. . . . . 6
|
| 18 | 11, 17 | oveqan12d 5962 |
. . . . 5
|
| 19 | 10, 18 | eqtrd 2237 |
. . . 4
|
| 20 | oveq1 5950 |
. . . . 5
| |
| 21 | id 19 |
. . . . 5
| |
| 22 | 20, 21 | eqeq12d 2219 |
. . . 4
|
| 23 | 19, 22 | syl5ibrcom 157 |
. . 3
|
| 24 | 23 | rexlimivv 2628 |
. 2
|
| 25 | 1, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-mulcom 8025 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 |
| This theorem is referenced by: mullid 8069 mulridi 8073 mulridd 8088 muleqadd 8740 divdivap1 8795 conjmulap 8801 nnmulcl 9056 expmul 10727 binom21 10795 binom2sub1 10797 bernneq 10803 hashiun 11731 fproddccvg 11825 prodmodclem2a 11829 efexp 11935 cncrng 14273 cnfld1 14276 ecxp 15315 lgsdilem2 15455 |
| Copyright terms: Public domain | W3C validator |