Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpos | Unicode version |
Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
ovmpos.3 |
Ref | Expression |
---|---|
ovmpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 | |
2 | nfcv 2308 | . . . . 5 | |
3 | nfcv 2308 | . . . . 5 | |
4 | nfcv 2308 | . . . . 5 | |
5 | nfcsb1v 3078 | . . . . . . 7 | |
6 | 5 | nfel1 2319 | . . . . . 6 |
7 | ovmpos.3 | . . . . . . . . 9 | |
8 | nfmpo1 5909 | . . . . . . . . 9 | |
9 | 7, 8 | nfcxfr 2305 | . . . . . . . 8 |
10 | nfcv 2308 | . . . . . . . 8 | |
11 | 2, 9, 10 | nfov 5872 | . . . . . . 7 |
12 | 11, 5 | nfeq 2316 | . . . . . 6 |
13 | 6, 12 | nfim 1560 | . . . . 5 |
14 | nfcsb1v 3078 | . . . . . . 7 | |
15 | 14 | nfel1 2319 | . . . . . 6 |
16 | nfmpo2 5910 | . . . . . . . . 9 | |
17 | 7, 16 | nfcxfr 2305 | . . . . . . . 8 |
18 | 3, 17, 4 | nfov 5872 | . . . . . . 7 |
19 | 18, 14 | nfeq 2316 | . . . . . 6 |
20 | 15, 19 | nfim 1560 | . . . . 5 |
21 | csbeq1a 3054 | . . . . . . 7 | |
22 | 21 | eleq1d 2235 | . . . . . 6 |
23 | oveq1 5849 | . . . . . . 7 | |
24 | 23, 21 | eqeq12d 2180 | . . . . . 6 |
25 | 22, 24 | imbi12d 233 | . . . . 5 |
26 | csbeq1a 3054 | . . . . . . 7 | |
27 | 26 | eleq1d 2235 | . . . . . 6 |
28 | oveq2 5850 | . . . . . . 7 | |
29 | 28, 26 | eqeq12d 2180 | . . . . . 6 |
30 | 27, 29 | imbi12d 233 | . . . . 5 |
31 | 7 | ovmpt4g 5964 | . . . . . 6 |
32 | 31 | 3expia 1195 | . . . . 5 |
33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2793 | . . . 4 |
34 | csbcomg 3068 | . . . . 5 | |
35 | 34 | eleq1d 2235 | . . . 4 |
36 | 34 | eqeq2d 2177 | . . . 4 |
37 | 33, 35, 36 | 3imtr4d 202 | . . 3 |
38 | 1, 37 | syl5 32 | . 2 |
39 | 38 | 3impia 1190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cvv 2726 csb 3045 (class class class)co 5842 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |