| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpos | Unicode version | ||
| Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovmpos.3 |
|
| Ref | Expression |
|---|---|
| ovmpos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. . 3
| |
| 2 | nfcv 2372 |
. . . . 5
| |
| 3 | nfcv 2372 |
. . . . 5
| |
| 4 | nfcv 2372 |
. . . . 5
| |
| 5 | nfcsb1v 3157 |
. . . . . . 7
| |
| 6 | 5 | nfel1 2383 |
. . . . . 6
|
| 7 | ovmpos.3 |
. . . . . . . . 9
| |
| 8 | nfmpo1 6071 |
. . . . . . . . 9
| |
| 9 | 7, 8 | nfcxfr 2369 |
. . . . . . . 8
|
| 10 | nfcv 2372 |
. . . . . . . 8
| |
| 11 | 2, 9, 10 | nfov 6031 |
. . . . . . 7
|
| 12 | 11, 5 | nfeq 2380 |
. . . . . 6
|
| 13 | 6, 12 | nfim 1618 |
. . . . 5
|
| 14 | nfcsb1v 3157 |
. . . . . . 7
| |
| 15 | 14 | nfel1 2383 |
. . . . . 6
|
| 16 | nfmpo2 6072 |
. . . . . . . . 9
| |
| 17 | 7, 16 | nfcxfr 2369 |
. . . . . . . 8
|
| 18 | 3, 17, 4 | nfov 6031 |
. . . . . . 7
|
| 19 | 18, 14 | nfeq 2380 |
. . . . . 6
|
| 20 | 15, 19 | nfim 1618 |
. . . . 5
|
| 21 | csbeq1a 3133 |
. . . . . . 7
| |
| 22 | 21 | eleq1d 2298 |
. . . . . 6
|
| 23 | oveq1 6008 |
. . . . . . 7
| |
| 24 | 23, 21 | eqeq12d 2244 |
. . . . . 6
|
| 25 | 22, 24 | imbi12d 234 |
. . . . 5
|
| 26 | csbeq1a 3133 |
. . . . . . 7
| |
| 27 | 26 | eleq1d 2298 |
. . . . . 6
|
| 28 | oveq2 6009 |
. . . . . . 7
| |
| 29 | 28, 26 | eqeq12d 2244 |
. . . . . 6
|
| 30 | 27, 29 | imbi12d 234 |
. . . . 5
|
| 31 | 7 | ovmpt4g 6127 |
. . . . . 6
|
| 32 | 31 | 3expia 1229 |
. . . . 5
|
| 33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2868 |
. . . 4
|
| 34 | csbcomg 3147 |
. . . . 5
| |
| 35 | 34 | eleq1d 2298 |
. . . 4
|
| 36 | 34 | eqeq2d 2241 |
. . . 4
|
| 37 | 33, 35, 36 | 3imtr4d 203 |
. . 3
|
| 38 | 1, 37 | syl5 32 |
. 2
|
| 39 | 38 | 3impia 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |