| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpos | Unicode version | ||
| Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovmpos.3 |
|
| Ref | Expression |
|---|---|
| ovmpos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. . 3
| |
| 2 | nfcv 2350 |
. . . . 5
| |
| 3 | nfcv 2350 |
. . . . 5
| |
| 4 | nfcv 2350 |
. . . . 5
| |
| 5 | nfcsb1v 3134 |
. . . . . . 7
| |
| 6 | 5 | nfel1 2361 |
. . . . . 6
|
| 7 | ovmpos.3 |
. . . . . . . . 9
| |
| 8 | nfmpo1 6035 |
. . . . . . . . 9
| |
| 9 | 7, 8 | nfcxfr 2347 |
. . . . . . . 8
|
| 10 | nfcv 2350 |
. . . . . . . 8
| |
| 11 | 2, 9, 10 | nfov 5997 |
. . . . . . 7
|
| 12 | 11, 5 | nfeq 2358 |
. . . . . 6
|
| 13 | 6, 12 | nfim 1596 |
. . . . 5
|
| 14 | nfcsb1v 3134 |
. . . . . . 7
| |
| 15 | 14 | nfel1 2361 |
. . . . . 6
|
| 16 | nfmpo2 6036 |
. . . . . . . . 9
| |
| 17 | 7, 16 | nfcxfr 2347 |
. . . . . . . 8
|
| 18 | 3, 17, 4 | nfov 5997 |
. . . . . . 7
|
| 19 | 18, 14 | nfeq 2358 |
. . . . . 6
|
| 20 | 15, 19 | nfim 1596 |
. . . . 5
|
| 21 | csbeq1a 3110 |
. . . . . . 7
| |
| 22 | 21 | eleq1d 2276 |
. . . . . 6
|
| 23 | oveq1 5974 |
. . . . . . 7
| |
| 24 | 23, 21 | eqeq12d 2222 |
. . . . . 6
|
| 25 | 22, 24 | imbi12d 234 |
. . . . 5
|
| 26 | csbeq1a 3110 |
. . . . . . 7
| |
| 27 | 26 | eleq1d 2276 |
. . . . . 6
|
| 28 | oveq2 5975 |
. . . . . . 7
| |
| 29 | 28, 26 | eqeq12d 2222 |
. . . . . 6
|
| 30 | 27, 29 | imbi12d 234 |
. . . . 5
|
| 31 | 7 | ovmpt4g 6091 |
. . . . . 6
|
| 32 | 31 | 3expia 1208 |
. . . . 5
|
| 33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2845 |
. . . 4
|
| 34 | csbcomg 3124 |
. . . . 5
| |
| 35 | 34 | eleq1d 2276 |
. . . 4
|
| 36 | 34 | eqeq2d 2219 |
. . . 4
|
| 37 | 33, 35, 36 | 3imtr4d 203 |
. . 3
|
| 38 | 1, 37 | syl5 32 |
. 2
|
| 39 | 38 | 3impia 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |