| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpos | Unicode version | ||
| Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovmpos.3 |
|
| Ref | Expression |
|---|---|
| ovmpos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. . 3
| |
| 2 | nfcv 2339 |
. . . . 5
| |
| 3 | nfcv 2339 |
. . . . 5
| |
| 4 | nfcv 2339 |
. . . . 5
| |
| 5 | nfcsb1v 3117 |
. . . . . . 7
| |
| 6 | 5 | nfel1 2350 |
. . . . . 6
|
| 7 | ovmpos.3 |
. . . . . . . . 9
| |
| 8 | nfmpo1 5989 |
. . . . . . . . 9
| |
| 9 | 7, 8 | nfcxfr 2336 |
. . . . . . . 8
|
| 10 | nfcv 2339 |
. . . . . . . 8
| |
| 11 | 2, 9, 10 | nfov 5952 |
. . . . . . 7
|
| 12 | 11, 5 | nfeq 2347 |
. . . . . 6
|
| 13 | 6, 12 | nfim 1586 |
. . . . 5
|
| 14 | nfcsb1v 3117 |
. . . . . . 7
| |
| 15 | 14 | nfel1 2350 |
. . . . . 6
|
| 16 | nfmpo2 5990 |
. . . . . . . . 9
| |
| 17 | 7, 16 | nfcxfr 2336 |
. . . . . . . 8
|
| 18 | 3, 17, 4 | nfov 5952 |
. . . . . . 7
|
| 19 | 18, 14 | nfeq 2347 |
. . . . . 6
|
| 20 | 15, 19 | nfim 1586 |
. . . . 5
|
| 21 | csbeq1a 3093 |
. . . . . . 7
| |
| 22 | 21 | eleq1d 2265 |
. . . . . 6
|
| 23 | oveq1 5929 |
. . . . . . 7
| |
| 24 | 23, 21 | eqeq12d 2211 |
. . . . . 6
|
| 25 | 22, 24 | imbi12d 234 |
. . . . 5
|
| 26 | csbeq1a 3093 |
. . . . . . 7
| |
| 27 | 26 | eleq1d 2265 |
. . . . . 6
|
| 28 | oveq2 5930 |
. . . . . . 7
| |
| 29 | 28, 26 | eqeq12d 2211 |
. . . . . 6
|
| 30 | 27, 29 | imbi12d 234 |
. . . . 5
|
| 31 | 7 | ovmpt4g 6045 |
. . . . . 6
|
| 32 | 31 | 3expia 1207 |
. . . . 5
|
| 33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2831 |
. . . 4
|
| 34 | csbcomg 3107 |
. . . . 5
| |
| 35 | 34 | eleq1d 2265 |
. . . 4
|
| 36 | 34 | eqeq2d 2208 |
. . . 4
|
| 37 | 33, 35, 36 | 3imtr4d 203 |
. . 3
|
| 38 | 1, 37 | syl5 32 |
. 2
|
| 39 | 38 | 3impia 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |