ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbcomg GIF version

Theorem csbcomg 3124
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.)
Assertion
Ref Expression
csbcomg ((𝐴𝑉𝐵𝑊) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem csbcomg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 2788 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2788 . 2 (𝐵𝑊𝐵 ∈ V)
3 sbccom 3081 . . . . . 6 ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶)
43a1i 9 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶))
5 sbcel2g 3122 . . . . . . 7 (𝐵 ∈ V → ([𝐵 / 𝑦]𝑧𝐶𝑧𝐵 / 𝑦𝐶))
65sbcbidv 3064 . . . . . 6 (𝐵 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶))
76adantl 277 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶))
8 sbcel2g 3122 . . . . . . 7 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑧𝐶𝑧𝐴 / 𝑥𝐶))
98sbcbidv 3064 . . . . . 6 (𝐴 ∈ V → ([𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶[𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶))
109adantr 276 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶[𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶))
114, 7, 103bitr3d 218 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶))
12 sbcel2g 3122 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶𝑧𝐴 / 𝑥𝐵 / 𝑦𝐶))
1312adantr 276 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶𝑧𝐴 / 𝑥𝐵 / 𝑦𝐶))
14 sbcel2g 3122 . . . . 5 (𝐵 ∈ V → ([𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶𝑧𝐵 / 𝑦𝐴 / 𝑥𝐶))
1514adantl 277 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶𝑧𝐵 / 𝑦𝐴 / 𝑥𝐶))
1611, 13, 153bitr3d 218 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧𝐴 / 𝑥𝐵 / 𝑦𝐶𝑧𝐵 / 𝑦𝐴 / 𝑥𝐶))
1716eqrdv 2205 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
181, 2, 17syl2an 289 1 ((𝐴𝑉𝐵𝑊) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  Vcvv 2776  [wsbc 3005  csb 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006  df-csb 3102
This theorem is referenced by:  ovmpos  6092
  Copyright terms: Public domain W3C validator