ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbcomg GIF version

Theorem csbcomg 3068
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.)
Assertion
Ref Expression
csbcomg ((𝐴𝑉𝐵𝑊) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem csbcomg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 2737 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2737 . 2 (𝐵𝑊𝐵 ∈ V)
3 sbccom 3026 . . . . . 6 ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶)
43a1i 9 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶))
5 sbcel2g 3066 . . . . . . 7 (𝐵 ∈ V → ([𝐵 / 𝑦]𝑧𝐶𝑧𝐵 / 𝑦𝐶))
65sbcbidv 3009 . . . . . 6 (𝐵 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶))
76adantl 275 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶))
8 sbcel2g 3066 . . . . . . 7 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑧𝐶𝑧𝐴 / 𝑥𝐶))
98sbcbidv 3009 . . . . . 6 (𝐴 ∈ V → ([𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶[𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶))
109adantr 274 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶[𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶))
114, 7, 103bitr3d 217 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶))
12 sbcel2g 3066 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶𝑧𝐴 / 𝑥𝐵 / 𝑦𝐶))
1312adantr 274 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶𝑧𝐴 / 𝑥𝐵 / 𝑦𝐶))
14 sbcel2g 3066 . . . . 5 (𝐵 ∈ V → ([𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶𝑧𝐵 / 𝑦𝐴 / 𝑥𝐶))
1514adantl 275 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶𝑧𝐵 / 𝑦𝐴 / 𝑥𝐶))
1611, 13, 153bitr3d 217 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑧𝐴 / 𝑥𝐵 / 𝑦𝐶𝑧𝐵 / 𝑦𝐴 / 𝑥𝐶))
1716eqrdv 2163 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
181, 2, 17syl2an 287 1 ((𝐴𝑉𝐵𝑊) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  Vcvv 2726  [wsbc 2951  csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  ovmpos  5965
  Copyright terms: Public domain W3C validator