ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq2 Unicode version

Theorem deceq2 9544
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq2  |-  ( A  =  B  -> ; C A  = ; C B )

Proof of Theorem deceq2
StepHypRef Expression
1 oveq2 5975 . 2  |-  ( A  =  B  ->  (
( ( 9  +  1 )  x.  C
)  +  A )  =  ( ( ( 9  +  1 )  x.  C )  +  B ) )
2 df-dec 9540 . 2  |- ; C A  =  ( ( ( 9  +  1 )  x.  C
)  +  A )
3 df-dec 9540 . 2  |- ; C B  =  ( ( ( 9  +  1 )  x.  C
)  +  B )
41, 2, 33eqtr4g 2265 1  |-  ( A  =  B  -> ; C A  = ; C B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  (class class class)co 5967   1c1 7961    + caddc 7963    x. cmul 7965   9c9 9129  ;cdc 9539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-dec 9540
This theorem is referenced by:  deceq2i  9546
  Copyright terms: Public domain W3C validator