ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq2 Unicode version

Theorem deceq2 9348
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq2  |-  ( A  =  B  -> ; C A  = ; C B )

Proof of Theorem deceq2
StepHypRef Expression
1 oveq2 5861 . 2  |-  ( A  =  B  ->  (
( ( 9  +  1 )  x.  C
)  +  A )  =  ( ( ( 9  +  1 )  x.  C )  +  B ) )
2 df-dec 9344 . 2  |- ; C A  =  ( ( ( 9  +  1 )  x.  C
)  +  A )
3 df-dec 9344 . 2  |- ; C B  =  ( ( ( 9  +  1 )  x.  C
)  +  B )
41, 2, 33eqtr4g 2228 1  |-  ( A  =  B  -> ; C A  = ; C B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348  (class class class)co 5853   1c1 7775    + caddc 7777    x. cmul 7779   9c9 8936  ;cdc 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-dec 9344
This theorem is referenced by:  deceq2i  9350
  Copyright terms: Public domain W3C validator