ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq2 Unicode version

Theorem deceq2 9362
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq2  |-  ( A  =  B  -> ; C A  = ; C B )

Proof of Theorem deceq2
StepHypRef Expression
1 oveq2 5873 . 2  |-  ( A  =  B  ->  (
( ( 9  +  1 )  x.  C
)  +  A )  =  ( ( ( 9  +  1 )  x.  C )  +  B ) )
2 df-dec 9358 . 2  |- ; C A  =  ( ( ( 9  +  1 )  x.  C
)  +  A )
3 df-dec 9358 . 2  |- ; C B  =  ( ( ( 9  +  1 )  x.  C
)  +  B )
41, 2, 33eqtr4g 2233 1  |-  ( A  =  B  -> ; C A  = ; C B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353  (class class class)co 5865   1c1 7787    + caddc 7789    x. cmul 7791   9c9 8950  ;cdc 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868  df-dec 9358
This theorem is referenced by:  deceq2i  9364
  Copyright terms: Public domain W3C validator