ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq1 Unicode version

Theorem deceq1 9508
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq1  |-  ( A  =  B  -> ; A C  = ; B C )

Proof of Theorem deceq1
StepHypRef Expression
1 oveq2 5952 . . 3  |-  ( A  =  B  ->  (
( 9  +  1 )  x.  A )  =  ( ( 9  +  1 )  x.  B ) )
21oveq1d 5959 . 2  |-  ( A  =  B  ->  (
( ( 9  +  1 )  x.  A
)  +  C )  =  ( ( ( 9  +  1 )  x.  B )  +  C ) )
3 df-dec 9505 . 2  |- ; A C  =  ( ( ( 9  +  1 )  x.  A
)  +  C )
4 df-dec 9505 . 2  |- ; B C  =  ( ( ( 9  +  1 )  x.  B
)  +  C )
52, 3, 43eqtr4g 2263 1  |-  ( A  =  B  -> ; A C  = ; B C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  (class class class)co 5944   1c1 7926    + caddc 7928    x. cmul 7930   9c9 9094  ;cdc 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-dec 9505
This theorem is referenced by:  deceq1i  9510
  Copyright terms: Public domain W3C validator