ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq1 Unicode version

Theorem deceq1 9326
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq1  |-  ( A  =  B  -> ; A C  = ; B C )

Proof of Theorem deceq1
StepHypRef Expression
1 oveq2 5850 . . 3  |-  ( A  =  B  ->  (
( 9  +  1 )  x.  A )  =  ( ( 9  +  1 )  x.  B ) )
21oveq1d 5857 . 2  |-  ( A  =  B  ->  (
( ( 9  +  1 )  x.  A
)  +  C )  =  ( ( ( 9  +  1 )  x.  B )  +  C ) )
3 df-dec 9323 . 2  |- ; A C  =  ( ( ( 9  +  1 )  x.  A
)  +  C )
4 df-dec 9323 . 2  |- ; B C  =  ( ( ( 9  +  1 )  x.  B
)  +  C )
52, 3, 43eqtr4g 2224 1  |-  ( A  =  B  -> ; A C  = ; B C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343  (class class class)co 5842   1c1 7754    + caddc 7756    x. cmul 7758   9c9 8915  ;cdc 9322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-dec 9323
This theorem is referenced by:  deceq1i  9328
  Copyright terms: Public domain W3C validator