ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq1 Unicode version

Theorem deceq1 9452
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq1  |-  ( A  =  B  -> ; A C  = ; B C )

Proof of Theorem deceq1
StepHypRef Expression
1 oveq2 5926 . . 3  |-  ( A  =  B  ->  (
( 9  +  1 )  x.  A )  =  ( ( 9  +  1 )  x.  B ) )
21oveq1d 5933 . 2  |-  ( A  =  B  ->  (
( ( 9  +  1 )  x.  A
)  +  C )  =  ( ( ( 9  +  1 )  x.  B )  +  C ) )
3 df-dec 9449 . 2  |- ; A C  =  ( ( ( 9  +  1 )  x.  A
)  +  C )
4 df-dec 9449 . 2  |- ; B C  =  ( ( ( 9  +  1 )  x.  B
)  +  C )
52, 3, 43eqtr4g 2251 1  |-  ( A  =  B  -> ; A C  = ; B C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364  (class class class)co 5918   1c1 7873    + caddc 7875    x. cmul 7877   9c9 9040  ;cdc 9448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-dec 9449
This theorem is referenced by:  deceq1i  9454
  Copyright terms: Public domain W3C validator