ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq2 GIF version

Theorem deceq2 9389
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq2 (๐ด = ๐ต โ†’ ๐ถ๐ด = ๐ถ๐ต)

Proof of Theorem deceq2
StepHypRef Expression
1 oveq2 5883 . 2 (๐ด = ๐ต โ†’ (((9 + 1) ยท ๐ถ) + ๐ด) = (((9 + 1) ยท ๐ถ) + ๐ต))
2 df-dec 9385 . 2 ๐ถ๐ด = (((9 + 1) ยท ๐ถ) + ๐ด)
3 df-dec 9385 . 2 ๐ถ๐ต = (((9 + 1) ยท ๐ถ) + ๐ต)
41, 2, 33eqtr4g 2235 1 (๐ด = ๐ต โ†’ ๐ถ๐ด = ๐ถ๐ต)
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   = wceq 1353  (class class class)co 5875  1c1 7812   + caddc 7814   ยท cmul 7816  9c9 8977  cdc 9384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878  df-dec 9385
This theorem is referenced by:  deceq2i  9391
  Copyright terms: Public domain W3C validator