| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > deceq2 | GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| deceq2 | ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 5930 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐶) + 𝐴) = (((9 + 1) · 𝐶) + 𝐵)) | |
| 2 | df-dec 9458 | . 2 ⊢ ;𝐶𝐴 = (((9 + 1) · 𝐶) + 𝐴) | |
| 3 | df-dec 9458 | . 2 ⊢ ;𝐶𝐵 = (((9 + 1) · 𝐶) + 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 (class class class)co 5922 1c1 7880 + caddc 7882 · cmul 7884 9c9 9048 ;cdc 9457 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-dec 9458 | 
| This theorem is referenced by: deceq2i 9464 | 
| Copyright terms: Public domain | W3C validator |