| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issod | Unicode version | ||
| Description: An irreflexive, transitive, trichotomous relation is a linear ordering (in the sense of df-iso 4387). (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| issod.1 |
|
| issod.2 |
|
| Ref | Expression |
|---|---|
| issod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issod.1 |
. 2
| |
| 2 | issod.2 |
. . . . . . . . . . 11
| |
| 3 | 2 | 3adant3 1041 |
. . . . . . . . . 10
|
| 4 | orc 717 |
. . . . . . . . . . . 12
| |
| 5 | 4 | a1i 9 |
. . . . . . . . . . 11
|
| 6 | simp3r 1050 |
. . . . . . . . . . . . 13
| |
| 7 | breq1 4085 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | syl5ibcom 155 |
. . . . . . . . . . . 12
|
| 9 | olc 716 |
. . . . . . . . . . . 12
| |
| 10 | 8, 9 | syl6 33 |
. . . . . . . . . . 11
|
| 11 | simp1 1021 |
. . . . . . . . . . . . 13
| |
| 12 | simp2r 1048 |
. . . . . . . . . . . . . 14
| |
| 13 | simp2l 1047 |
. . . . . . . . . . . . . 14
| |
| 14 | simp3l 1049 |
. . . . . . . . . . . . . 14
| |
| 15 | 12, 13, 14 | 3jca 1201 |
. . . . . . . . . . . . 13
|
| 16 | potr 4398 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 1, 16 | sylan 283 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | expcomd 1484 |
. . . . . . . . . . . . . 14
|
| 19 | 18 | imp 124 |
. . . . . . . . . . . . 13
|
| 20 | 11, 15, 6, 19 | syl21anc 1270 |
. . . . . . . . . . . 12
|
| 21 | 20, 9 | syl6 33 |
. . . . . . . . . . 11
|
| 22 | 5, 10, 21 | 3jaod 1338 |
. . . . . . . . . 10
|
| 23 | 3, 22 | mpd 13 |
. . . . . . . . 9
|
| 24 | 23 | 3expa 1227 |
. . . . . . . 8
|
| 25 | 24 | expr 375 |
. . . . . . 7
|
| 26 | 25 | ralrimiva 2603 |
. . . . . 6
|
| 27 | 26 | anassrs 400 |
. . . . 5
|
| 28 | 27 | ralrimiva 2603 |
. . . 4
|
| 29 | ralcom 2694 |
. . . 4
| |
| 30 | 28, 29 | sylib 122 |
. . 3
|
| 31 | 30 | ralrimiva 2603 |
. 2
|
| 32 | df-iso 4387 |
. 2
| |
| 33 | 1, 31, 32 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-po 4386 df-iso 4387 |
| This theorem is referenced by: ltsopi 7503 ltsonq 7581 |
| Copyright terms: Public domain | W3C validator |