| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > issod | Unicode version | ||
| Description: An irreflexive, transitive, trichotomous relation is a linear ordering (in the sense of df-iso 4332). (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| issod.1 | 
 | 
| issod.2 | 
 | 
| Ref | Expression | 
|---|---|
| issod | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issod.1 | 
. 2
 | |
| 2 | issod.2 | 
. . . . . . . . . . 11
 | |
| 3 | 2 | 3adant3 1019 | 
. . . . . . . . . 10
 | 
| 4 | orc 713 | 
. . . . . . . . . . . 12
 | |
| 5 | 4 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 6 | simp3r 1028 | 
. . . . . . . . . . . . 13
 | |
| 7 | breq1 4036 | 
. . . . . . . . . . . . 13
 | |
| 8 | 6, 7 | syl5ibcom 155 | 
. . . . . . . . . . . 12
 | 
| 9 | olc 712 | 
. . . . . . . . . . . 12
 | |
| 10 | 8, 9 | syl6 33 | 
. . . . . . . . . . 11
 | 
| 11 | simp1 999 | 
. . . . . . . . . . . . 13
 | |
| 12 | simp2r 1026 | 
. . . . . . . . . . . . . 14
 | |
| 13 | simp2l 1025 | 
. . . . . . . . . . . . . 14
 | |
| 14 | simp3l 1027 | 
. . . . . . . . . . . . . 14
 | |
| 15 | 12, 13, 14 | 3jca 1179 | 
. . . . . . . . . . . . 13
 | 
| 16 | potr 4343 | 
. . . . . . . . . . . . . . . 16
 | |
| 17 | 1, 16 | sylan 283 | 
. . . . . . . . . . . . . . 15
 | 
| 18 | 17 | expcomd 1452 | 
. . . . . . . . . . . . . 14
 | 
| 19 | 18 | imp 124 | 
. . . . . . . . . . . . 13
 | 
| 20 | 11, 15, 6, 19 | syl21anc 1248 | 
. . . . . . . . . . . 12
 | 
| 21 | 20, 9 | syl6 33 | 
. . . . . . . . . . 11
 | 
| 22 | 5, 10, 21 | 3jaod 1315 | 
. . . . . . . . . 10
 | 
| 23 | 3, 22 | mpd 13 | 
. . . . . . . . 9
 | 
| 24 | 23 | 3expa 1205 | 
. . . . . . . 8
 | 
| 25 | 24 | expr 375 | 
. . . . . . 7
 | 
| 26 | 25 | ralrimiva 2570 | 
. . . . . 6
 | 
| 27 | 26 | anassrs 400 | 
. . . . 5
 | 
| 28 | 27 | ralrimiva 2570 | 
. . . 4
 | 
| 29 | ralcom 2660 | 
. . . 4
 | |
| 30 | 28, 29 | sylib 122 | 
. . 3
 | 
| 31 | 30 | ralrimiva 2570 | 
. 2
 | 
| 32 | df-iso 4332 | 
. 2
 | |
| 33 | 1, 31, 32 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-po 4331 df-iso 4332 | 
| This theorem is referenced by: ltsopi 7387 ltsonq 7465 | 
| Copyright terms: Public domain | W3C validator |