ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issod Unicode version

Theorem issod 4146
Description: An irreflexive, transitive, trichotomous relation is a linear ordering (in the sense of df-iso 4124). (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
issod.1  |-  ( ph  ->  R  Po  A )
issod.2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x R y  \/  x  =  y  \/  y R x ) )
Assertion
Ref Expression
issod  |-  ( ph  ->  R  Or  A )
Distinct variable groups:    x, y, R   
x, A, y    ph, x, y

Proof of Theorem issod
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 issod.1 . 2  |-  ( ph  ->  R  Po  A )
2 issod.2 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x R y  \/  x  =  y  \/  y R x ) )
323adant3 963 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( x R y  \/  x  =  y  \/  y R x ) )
4 orc 668 . . . . . . . . . . . 12  |-  ( x R y  ->  (
x R y  \/  y R z ) )
54a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( x R y  ->  ( x R y  \/  y R z ) ) )
6 simp3r 972 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  x R z )
7 breq1 3848 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x R z  <->  y R
z ) )
86, 7syl5ibcom 153 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( x  =  y  ->  y R
z ) )
9 olc 667 . . . . . . . . . . . 12  |-  ( y R z  ->  (
x R y  \/  y R z ) )
108, 9syl6 33 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( x  =  y  ->  ( x R y  \/  y R z ) ) )
11 simp1 943 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ph )
12 simp2r 970 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  y  e.  A
)
13 simp2l 969 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  x  e.  A
)
14 simp3l 971 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  z  e.  A
)
1512, 13, 143jca 1123 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( y  e.  A  /\  x  e.  A  /\  z  e.  A ) )
16 potr 4135 . . . . . . . . . . . . . . . 16  |-  ( ( R  Po  A  /\  ( y  e.  A  /\  x  e.  A  /\  z  e.  A
) )  ->  (
( y R x  /\  x R z )  ->  y R
z ) )
171, 16sylan 277 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  A  /\  x  e.  A  /\  z  e.  A ) )  -> 
( ( y R x  /\  x R z )  ->  y R z ) )
1817expcomd 1375 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  A  /\  x  e.  A  /\  z  e.  A ) )  -> 
( x R z  ->  ( y R x  ->  y R
z ) ) )
1918imp 122 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  A  /\  x  e.  A  /\  z  e.  A )
)  /\  x R
z )  ->  (
y R x  -> 
y R z ) )
2011, 15, 6, 19syl21anc 1173 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( y R x  ->  y R
z ) )
2120, 9syl6 33 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( y R x  ->  ( x R y  \/  y R z ) ) )
225, 10, 213jaod 1240 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( ( x R y  \/  x  =  y  \/  y R x )  -> 
( x R y  \/  y R z ) ) )
233, 22mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A )  /\  (
z  e.  A  /\  x R z ) )  ->  ( x R y  \/  y R z ) )
24233expa 1143 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A )
)  /\  ( z  e.  A  /\  x R z ) )  ->  ( x R y  \/  y R z ) )
2524expr 367 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A )
)  /\  z  e.  A )  ->  (
x R z  -> 
( x R y  \/  y R z ) ) )
2625ralrimiva 2446 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  ->  A. z  e.  A  ( x R z  ->  ( x R y  \/  y R z ) ) )
2726anassrs 392 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  A )  ->  A. z  e.  A  ( x R z  ->  (
x R y  \/  y R z ) ) )
2827ralrimiva 2446 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  A  A. z  e.  A  ( x R z  ->  (
x R y  \/  y R z ) ) )
29 ralcom 2530 . . . 4  |-  ( A. y  e.  A  A. z  e.  A  (
x R z  -> 
( x R y  \/  y R z ) )  <->  A. z  e.  A  A. y  e.  A  ( x R z  ->  (
x R y  \/  y R z ) ) )
3028, 29sylib 120 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  A. z  e.  A  A. y  e.  A  ( x R z  ->  (
x R y  \/  y R z ) ) )
3130ralrimiva 2446 . 2  |-  ( ph  ->  A. x  e.  A  A. z  e.  A  A. y  e.  A  ( x R z  ->  ( x R y  \/  y R z ) ) )
32 df-iso 4124 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. z  e.  A  A. y  e.  A  ( x R z  ->  (
x R y  \/  y R z ) ) ) )
331, 31, 32sylanbrc 408 1  |-  ( ph  ->  R  Or  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 664    \/ w3o 923    /\ w3a 924    e. wcel 1438   A.wral 2359   class class class wbr 3845    Po wpo 4121    Or wor 4122
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-un 3003  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-po 4123  df-iso 4124
This theorem is referenced by:  ltsopi  6879  ltsonq  6957
  Copyright terms: Public domain W3C validator